Title: Promoter Methylation of Selected Genes and Response to Azacitidine (AZ) Therapy in Patients with Non-BCR-ABL Myeloproliferative Disorders (MPDs)

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4625-4625
Author(s):  
Nicholas Achille ◽  
Laura Michaelis ◽  
Scott E. Smith ◽  
Eliza Germano ◽  
Nancy J. Zeleznik-Le ◽  
...  

Abstract Abstract 4625 Background: Gene silencing via methylation of CpG islands in the promoter regions of many genes but specifically of APAF1, p15INK4B, p16INK4A, RARB, and CDH1 appears to play a role in pathogenesis of myeloid malignancies. Azacitidine (AZ) causes demethylation by inhibiting DNA methyltransferase and has already been shown to be an effective therapy for myelodysplastic syndromes. The demethylation induced by AZ is detectable in about 48 hours and increases significantly after 5 days of therapy. After that, the effect tends to plateau. Methods: We initiated a Phase 2 study of patients with non-BCR-ABL MPDs to determine clinical response to AZ therapy and correlate it with promoter DNA methylation and gene re-expression. The protocol was approved by the institutional IRB. Patients received AZ 75mg/m2 s/c for days 1–7 and repeated every 28 days for a minimum of 4 cycles. Responders were allowed to continue treatment until disease progression. Pretreatment and D 7 peripheral blood samples were analyzed for promoter methylation status and expression of the 5 genes mentioned above. Bisulfite conversion of DNA was followed by quantitative PCR using primers specific for methylated or for unmethylated promoter regions. For gene re-expression analysis, quantitative RT-PCR was performed with RNA isolated from the same patient samples and the same time points as the DNA methylation analyses. Results: Seven patients were enrolled before the study closed due to lack of accrual. The diagnoses were: Myelofibrosis (MF) 4, essential thrombocythemia 1, unclassified MPD with dysplasia 2. One patient with MF and one with unclassified MPD responded, the latter with normalization of marrow karyotype. Both responses were accompanied by significant decrease in APAF1 promoter methylation and surprisingly, an increase in promoter methylation of RARB. In three of the non-responders, APAF1 methylation increased. In patients with decreased Apaf1 methylation, a statistically significant increase in mRNA expression was observed. Conclusions: Within its limitations, this small trial shows that the methylation status of selected genes, particularly of APAF1 and RARB (inversely) is associated with response to treatment with azacitidine in patients with MPDs. In non-responders, Apaf1 methylation appears to increase. A larger study will be necessary to confirm these preliminary observations. Disclosures: Smith: Seattle Genetics, Inc.: Research Funding; Cephalon: Consultancy, Speakers Bureau; Celgene: Consultancy, Speakers Bureau; Spectrum: Consultancy; GSK: Speakers Bureau. Nand:Celgene Corporation: Research Funding.

2020 ◽  
Vol 13 ◽  
pp. 251686572095968
Author(s):  
Allison H Rietze ◽  
Yvette P Conley ◽  
Dianxu Ren ◽  
Cindy M Anderson ◽  
James M Roberts ◽  
...  

Objective: We compared blood-based DNA methylation levels of endoglin ( ENG) and transforming growth factor beta receptor 2 ( TGFβR2) gene promoter regions between women with clinically-overt preeclampsia and women with uncomplicated, normotensive pregnancies. Methods: We used EpiTect Methyl II PCR Assays to evaluate DNA methylation of CpG islands located in promoter regions of ENG (CpG Island 114642) and TGFβR2 (CpG Island 110111). Preeclampsia was diagnosed based on blood pressure, protein, and uric acid criteria. N = 21 nulliparous preeclampsia case participants were 1:1 frequency matched to N = 21 nulliparous normotensive control participants on gestational age at sample collection (±2 weeks), smoking status, and labor status at sample collection. Methylation values were compared between case and control participant groups [( ENG subset: n = 20 (9 cases, 11 controls); TGFβR2 subset: n = 28 (15 cases, 13 controls)]. Results: The majority of the preeclampsia cases delivered at ⩾34 weeks’ gestation (83%). Average methylation levels for ENG ([M ± (SD)]; Case Participant Group = 6.54% ± 4.57 versus Control Participant group = 4.81% ± 5.08; P = .102) and TGFβR2 (Case Participant Group = 1.50% ± 1.37 vs Control Participant Group = 1.70% ± 1.40; P = .695) promoter CpG islands did not differ significantly between the participant groups. Removal of 2 extreme outliers in the ENG analytic subset revealed a trend between levels of ENG methylation and pregnancy outcome (Case Participant Group = 5.17% ± 2.16 vs Control Participant Group = 3.36% ± 1.73; P = .062). Conclusion: Additional epigenetic studies that include larger sample sizes, investigate preeclampsia subtypes, and capture methylation status of CpG island shores and shelves are needed to further inform us of the potential role that ENG and TGFβR2 DNA methylation plays in preeclampsia pathophysiology.


2006 ◽  
Vol 5 (1) ◽  
pp. 18-25 ◽  
Author(s):  
Mariko Katoh ◽  
Tomaz Curk ◽  
Qikai Xu ◽  
Blaz Zupan ◽  
Adam Kuspa ◽  
...  

ABSTRACT Methylation of cytosine residues in DNA plays a critical role in the silencing of gene expression, organization of chromatin structure, and cellular differentiation of eukaryotes. Previous studies failed to detect 5-methylcytosine in Dictyostelium genomic DNA, but the recent sequencing of the Dictyostelium genome revealed a candidate DNA methyltransferase gene (dnmA). The genome sequence also uncovered an unusual distribution of potential methylation sites, CpG islands, throughout the genome. DnmA belongs to the Dnmt2 subfamily and contains all the catalytic motifs necessary for cytosine methyltransferases. Dnmt2 activity is typically weak in Drosophila melanogaster, mouse, and human cells and the gene function in these systems is unknown. We have investigated the methylation status of Dictyostelium genomic DNA with antibodies raised against 5-methylcytosine and detected low levels of the modified nucleotide. We also found that DNA methylation increased during development. We searched the genome for potential methylation sites and found them in retrotransposable elements and in several other genes. Using Southern blot analysis with methylation-sensitive and -insensitive restriction endonucleases, we found that the DIRS retrotransposon and the guaB gene were indeed methylated. We then mutated the dnmA gene and found that DNA methylation was reduced to about 50% of the wild-type level. The mutant cells exhibited morphological defects in late development, indicating that DNA methylation has a regulatory role in Dictyostelium development. Our findings establish a role for a Dnmt2 methyltransferase in eukaryotic development.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1126-1126 ◽  
Author(s):  
Jaroslav Jelinek ◽  
Rajan Mannari ◽  
Jean-Pierre Issa

Abstract DNA methylation within promoter-associated CpG islands is a well-recognized mechanism of gene silencing and plays an important role in the development of malignancies. CpG dinucleotides in human DNA are methylated at 5′-cytosine with the exception of areas with dense concentration of CpGs (CpG islands) located in gene promoter regions. In cancer cells, methylation of CpG islands in promoter regions of tumor suppressor genes is a frequent epigenetic change with a gene-silencing effect analogous to inactivating mutations. Methylation profiling can identify biologically and clinically distinct tumor subgroups by mapping the methylation status of multiple genes, and reports in AML and ALL suggest associations between methylation and poor prognosis. Identification of methylated CpG islands can shed new light on the biology of leukemia. We used Methylated CpG Island Amplification coupled with Representative Difference Analysis (MCA-RDA) as a genome-wide screen for promoter-associated CpG islands methylated in leukemic and/or myeloproliferative cell lines and primary malignant cells, but unmethylated in blood cells from normal controls. We identified 51 unique promoter-associated CpG islands in 321 sequenced clones recovered by MCA-RDA. Forty-one CpG islands belonged to known genes, and 10 to annotated mRNAs. Of the genes with known function, 8 are involved in signaling, 7 in transcription, 3 in dephosphorylation, 2 in oxido-reductive processes, 2 in NO synthesis, 2 in adhesion, 2 in solute transport, and 2 in DNA replication. Seven out of the 51 genes were previously reported as methylated in cancer or leukemia (CDH13, HLA-B, HLA-C, PGR, SCGB3A1, SLC26A4, TERT), thus validating the MCA-RDA approach. Of the 41 new hypermethylated CpG islands recovered, 20 corresponded to genes of known function. Published data infer an association with cancer for 10 of these genes (CTDSPL, ECGF1, EDG4, FOXD2, NOR1, NOS3, OLIG2, SLC16A1, TLE1, WNT5B), and no reports were found for the other 10 genes (CNR1, FADS, FBXW3, FGD1, NPM2, P518, PDE4DIP, SNCB, TCEA3, VENTX2). To further validate our findings we are assessing the methylation status of these genes by bisulfite pyrosequencing. Analyses of the bone marrow samples from AML, ALL, CML and MDS patients are ongoing. Our preliminary data confirm methylation of H-cadherin precursor (CDH13), progesterone receptor (PGR) in AML and ALL and cannabinoid receptor 1 (CNR1) in ALL (Table). In conclusion, MCA-RDA identified methylation of 41 new and 10 previously reported promoter-associated CpG islands in leukemia. Functional studies of these may shed new light on the biology of leukemias, and these genes may be useful for methylation profiling of leukemias for prognosis and response to treatment. Promoter CpG Island Methylation Gene AML ALL Methylation levels over 10% for CDH13 and PGR and over 25% for CNR1 were scored as positive. CDH13 5/23 22% 12/19 63% PGR A Isoform 11/22 50% 12/18 67% PGR B Isoform 17/24 71% 5/13 38% CNR1 0/24 0% 3/18 17%


2018 ◽  
Vol 4 (2) ◽  
pp. 100040 ◽  
Author(s):  
Anna Wierczeiko ◽  
David Fournier ◽  
Hristo Todorov ◽  
Susanne Klingenberg ◽  
Kristina Endres ◽  
...  

Aging is a multi-factorial process, where epigenetic factors play one of the major roles in declines of gene expression and organic function. DNA methylation at CpG islands of promoters can directly change the expression of the neighbouring gene mostly through inhibition. Furthermore, it is known that DNA methylation patterns change during aging In our study, we investigated gene regulation through DNA methylation of genes up- and downregulated in long-lived people compared to a younger cohort. Our data revealed that comparatively highly methylated genes were associated with high expression in long-lived people (e.g. over 85). Genes with lower levels of methylation were associated with low expression. These findings might contradict the general model used to associate methylation status with expression. Indeed, we found that methylation in the promoter regions of all investigated genes is rather constant across different age groups, meaning that the disparity between methylation and expression only happens in older people. A potential explanation could be the impact of other epigenetic mechanisms, possibly related to stress.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Zijian Chen ◽  
Zenghong Huang ◽  
Yanxin Luo ◽  
Qi Zou ◽  
Liangliang Bai ◽  
...  

Abstract Background Neurotrophic tropomyosin receptor kinases (NTRKs) are a gene family function as oncogene or tumor suppressor gene in distinct cancers. We aimed to investigate the methylation and expression profiles and prognostic value of NTRKs gene in colorectal cancer (CRC). Methods An analysis of DNA methylation and expression profiles in CRC patients was performed to explore the critical methylations within NTRKs genes. The methylation marker was validated in a retrospectively collected cohort of 229 CRC patients and tested in other tumor types from TCGA. DNA methylation status was determined by quantitative methylation-specific PCR (QMSP). Results The profiles in six CRC cohorts showed that NTRKs gene promoter was more frequently methylated in CRC compared to normal mucosa, which was associated with suppressed gene expression. We identified a specific methylated region within NTRK3 promoter targeted by cg27034819 and cg11525479 that best predicted survival outcome in CRC. NTRK3 promoter methylation showed independently predictive value for survival outcome in the validation cohort (P = 0.004, HR 2.688, 95% CI [1.355, 5.333]). Based on this, a nomogram predicting survival outcome was developed with a C-index of 0.705. Furthermore, the addition of NTRK3 promoter methylation improved the performance of currently-used prognostic model (AIC: 516.49 vs 513.91; LR: 39.06 vs 43.64, P = 0.032). Finally, NTRK3 promoter methylation also predicted survival in other tumors, including pancreatic cancer, glioblastoma and stomach adenocarcinoma. Conclusions This study highlights the essential value of NTRK3 methylation in prognostic evaluation and the potential to improve current prognostic models in CRC and other tumors.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Jessilyn Dunn ◽  
Haiwei Qiu ◽  
Soyeon Kim ◽  
Daudi Jjingo ◽  
Ryan Hoffman ◽  
...  

Atherosclerosis preferentially occurs in arterial regions of disturbed blood flow (d-flow), which alters gene expression, endothelial function, and atherosclerosis. Here, we show that d-flow regulates genome-wide DNA methylation patterns in a DNA methyltransferase (DNMT)-dependent manner. We found that d-flow induced expression of DNMT1, but not DNMT3a or DNMT3b, in mouse arterial endothelium in vivo and in cultured endothelial cells by oscillatory shear (OS) compared to unidirectional laminar shear in vitro. The DNMT inhibitor 5-Aza-2’deoxycytidine (5Aza) or DNMT1 siRNA significantly reduced OS-induced endothelial inflammation. Moreover, 5Aza reduced lesion formation in two atherosclerosis models using ApoE-/- mice (western diet for 3 months and the partial carotid ligation model with western diet for 3 weeks). To identify the 5Aza mechanisms, we conducted two genome-wide studies: reduced representation bisulfite sequencing (RRBS) and transcript microarray using endothelial-enriched gDNA and RNA, respectively, obtained from the partially-ligated left common carotid artery (LCA exposed to d-flow) and the right contralateral control (RCA exposed to s-flow) of mice treated with 5Aza or vehicle. D-flow induced DNA hypermethylation in 421 gene promoters, which was significantly prevented by 5Aza in 335 genes. Systems biological analyses using the RRBS and the transcriptome data revealed 11 mechanosensitive genes whose promoters were hypermethylated by d-flow but rescued by 5Aza treatment. Of those, five genes contain hypermethylated cAMP-response-elements in their promoters, including the transcription factors HoxA5 and Klf3. Their methylation status could serve as a mechanosensitive master switch in endothelial gene expression. Our results demonstrate that d-flow controls epigenomic DNA methylation patterns in a DNMT-dependent manner, which in turn alters endothelial gene expression and induces atherosclerosis.


2012 ◽  
Vol 27 (4) ◽  
pp. 389-394 ◽  
Author(s):  
Annamaria La Torre ◽  
Lucia Anna Muscarella ◽  
Paola Parrella ◽  
Teresa Balsamo ◽  
Michele Bisceglia ◽  
...  

Disturbances in the epigenetic landscape by aberrant methylation of CpG islands can lead to inactivation of cancer-related genes in solid tumors. We analyzed the promoter methylation status of 6 genes previously reported as cancer-specific methylated (MCAM, SSBP2, NISCH, B4GALT1, KIF1A and RASSF1A) in 38 neural crest-derived tumors by quantitative methylation-specific real-time PCR (QMSP). The results demonstrated that the determination of the methylation status of RASSF1A is able to distinguish between normal and tumor samples in cutaneous melanomas, lung carcinoids and small bowel carcinoids. MCAM methylation levels were significantly higher in lung carcinoids tumors (p=0.001), suggesting that this alteration may represent a molecular biomarker in this tumor type.


Endocrinology ◽  
2009 ◽  
Vol 150 (10) ◽  
pp. 4681-4691 ◽  
Author(s):  
Aparna Mahakali Zama ◽  
Mehmet Uzumcu

Abstract Exposure to endocrine-disrupting chemicals during development could alter the epigenetic programming of the genome and result in adult-onset disease. Methoxychlor (MXC) and its metabolites possess estrogenic, antiestrogenic, and antiandrogenic activities. Previous studies showed that fetal/neonatal exposure to MXC caused adult ovarian dysfunction due to altered expression of key ovarian genes including estrogen receptor (ER)-β, which was down-regulated, whereas ERα was unaffected. The objective of the current study was to evaluate changes in global and gene-specific methylation patterns in adult ovaries associated with the observed defects. Rats were exposed to MXC (20 μg/kg·d or 100 mg/kg·d) between embryonic d 19 and postnatal d 7. We performed DNA methylation analysis of the known promoters of ERα and ERβ genes in postnatal d 50–60 ovaries using bisulfite sequencing and methylation-specific PCRs. Developmental exposure to MXC led to significant hypermethylation in the ERβ promoter regions (P < 0.05), whereas the ERα promoter was unaffected. We assessed global DNA methylation changes using methylation-sensitive arbitrarily primed PCR and identified 10 genes that were hypermethylated in ovaries from exposed rats. To determine whether the MXC-induced methylation changes were associated with increased DNA methyltransferase (DNMT) levels, we measured the expression levels of Dnmt3a, Dnmt3b, and Dnmt3l using semiquantitative RT-PCR. Whereas Dnmt3a and Dnmt3l were unchanged, Dnmt3b expression was stimulated in ovaries of the 100 mg/kg MXC group (P < 0.05), suggesting that increased DNMT3B may cause DNA hypermethylation in the ovary. Overall, these data suggest that transient exposure to MXC during fetal and neonatal development affects adult ovarian function via altered methylation patterns.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2608-2608
Author(s):  
Claudia Gebhard ◽  
Roger Mulet-Lazaro ◽  
Lucia Schwarzfischer ◽  
Dagmar Glatz ◽  
Margit Nuetzel ◽  
...  

Abstract Acute myeloid leukemia (AML) represents a highly heterogeneous myeloid stem cell disorder classified based on various genetic defects. Besides genetic alterations, epigenetic changes are recognized as an additional mechanism contributing to leukemogenesis, but insight into the latter process remains minor. Using a combination of Methyl-CpG-Immunoprecipitation (MCIp-chip) and MALDI-TOF analysis of bisulfite-treated DNA in a cohort of 196 AML patients we previously demonstrated that (cyto)genetically defined AML subtypes, including CBFB-MYH11, AML-ETO, NPM1-mut, CEBPA-mut or IDH1/2-mut subtypes, express specific DNA-methylation profiles (Gebhard et al, Leukemia, 2018). A fraction of AML patients (5/196) displayed a unique abnormal hypermethylation profile that was completely distinct from any other AML subtype. These patients present immature leukemia (FAB M0, M1) with various chromosomal aberrations but very few mutations (e.g. no IDH1/2, KRAS, DNMT3A) that might explain the CpG island methylator phenotype (CIMP) phenotype. The CIMP patients showed high resemblance with a recently reported CEBPA methylated subgroup (Wouters et al, 2007 and Figueroa et al, 2009), which we confirmed by MCIp-chip and MALDI-TOF analysis. To explore the whole range of epigenetic alterations in the CIMP-AML patients we performed in-depth global DNA methylation and gene expression analyses (MCIp-seq and RNA-seq) in 45 AML and 12 CIMP patients from both studies. Principle component analysis and t-distributed stochastic neighbor embedding (t-SNE) revealed that CIMP patients express a unique DNA-methylation and gene-expression signature that separated them from all other AMLs. We could discriminate promoter methylation from non-promoter methylation by selecting MCIp-seq peaks within 3kb around TSS. Promoter hypermethylation was highly associated with repression of genes (PCC = -0.053, p-value = 0.00075). Hypermethylation of non-promoter regions was more strongly associated with upregulation of genes (PCC = 0.046, p-value = 4.613e-06). Interestingly, differentially methylated regions also showed a positive association with myeloid lineage CTCF binding sites (27% vs 18% expected, p-value < 2.2e-16 in a chi-square test of independence). Methylation of CTCF sites causes loss of CTCF binding, which has been reported to disrupt boundaries between so-called topologically associated domains (TADs), allowing enhancers located in a particular TAD to become accessible to genes in adjacent TADs and affect their transcription. Whether this is the case is under investigation. In this study we particularly focused on the role of hypermethylation of promoters in CIMP-AMLs. Promoters of many transcriptional regulators that are involved in the differentiation of myeloid lineages of which several are frequently mutated in AML were hypermethylated and repressed, including CEBPA, CEBPD, IRF8, GATA2, KLF4, MITF or MAFB. Notably, HMGA2, a critical regulator of myeloid progenitor expansion, exhibited the largest degree of CIMP promoter hypermethylation compared to the other AMLs, accompanied by a reduction in gene expression. Moreover, multiple members of the HOXB family and KLF1 (erythroid differentiation) were methylated and repressed as well. In addition, these patients frequently showed hypermethylation of many chromatin factors (e.g. LMNA, CHD7 or TET2). Hypermethylation of the TET2 promoter could result in a loss of maintenance DNA demethylation and therefore successive hypermethylation at CpG islands. We carried out regulome-capture-bisulfite sequencing on CIMP-AMLs compared to other AML samples and normal blood cell controls and confirmed methylation of the same transcription and chromatin factor promoters. We conclude that these leukemias represent very primitive HSCPs which are blocked in differentiation into multiple hematopoietic lineages, due to the absence of regulators of these lineages. Although the underlying cause for the extreme hypermethylation signature is still subject to ongoing studies, the consequence of promoter hypermethylation is silencing of key lineage regulators causing the differentiation arrest in these cells. We argue that these patients may particularly benefit from therapies that revert DNA methylation. Disclosures Ehninger: Cellex Gesellschaft fuer Zellgewinnung mbH: Employment, Equity Ownership; GEMoaB Monoclonals GmbH: Employment, Equity Ownership; Bayer: Research Funding. Thiede:AgenDix: Other: Ownership; Novartis: Honoraria, Research Funding.


2021 ◽  
Author(s):  
Masaki Shirai ◽  
Takuya Nara ◽  
Haruko Takahashi ◽  
Kazuya Takayama ◽  
Yuan Chen ◽  
...  

CpG methylation in genomic DNA is well known as a repressive epigenetic marker in eukaryotic transcription, and DNA methylation of the promoter regions is correlated with silencing of gene expression. In contrast to the promoter regions, the function of DNA methylation during transcription termination remains to be elucidated. A recent study has revealed that mouse DNA methyltransferase 3a (Dnmt3a) mainly functions in de novo methylation in the promoter and gene body regions (including transcription termination sites (TTSs)) during development. To investigate the relationship between DNA methylation overlapping the TTSs and transcription termination, we employed two strategies: informatic analysis using already deposited datasets of Dnmt3a-/- mouse cells and the zebrafish model system. Bioinformatic analysis using methylome and transcriptome data showed that hypomethylated differentially methylated regions overlapping the TTSs were associated with increased read counts and chimeric transcripts downstream of TTSs in Dnmt3a-/- Agouti-related protein neurons, but not in Dnmt3a-/- ES cells and MEFs. We experimentally detected increased read-through and chimeric transcripts downstream of hypomethylated TTSs in zebrafish maternal-zygotic dnmt3aa-/- mutants. This study is the first to identify transcription termination defects in DNA hypomethylated TTSs in Dnmt3a-/- vertebrates.


Sign in / Sign up

Export Citation Format

Share Document