Phosphatidylinositol-3 Kinase Delta (PI3Kδ) Inhibitor AMG 319 Is a Potent, Selective and Orally Bioavailable Small Molecule Inhibitor That Suppresses PI3K-Mediated Signaling and Viability in Neoplastic B Cells

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4964-4964 ◽  
Author(s):  
Angus Sinclair ◽  
Daniela Metz ◽  
Tim Cushing ◽  
Liqin Liu ◽  
Rachael Brake ◽  
...  

Abstract Abstract 4964 Immune receptors such as the B cell receptor (BCR) require key signaling intermediate phosphatidylinositol-3 kinase delta (PI3Kδ) for normal immune cell survival, development and function. PI3Kδ is a class IA lipid kinase, is expressed primarily within the hematopoietic system and is composed of a catalytic subunit p110δ and a regulatory subunit p85. Recently, deregulated BCR-PI3Kδ signaling has been reported to play a role in B-cell malignancies such as chronic lymphocytic leukemia (CLL) and non-Hodgkin's lymphoma (NHL) by mediating abnormal B-cell growth and survival. Indeed, the constitutive phosphorylation of downstream signaling intermediate AKT is associated with poor prognosis in several B cell malignancies. Here, we have investigated the potential of a novel small molecule inhibitor of PI3Kδ, AMG 319, to suppress PI3K signaling in human B cell lines and assessed the subsequent effects on viability as a single agent and in combination with chemotherapeutic drugs in preclinical models. Small molecule AMG 319 is a potent and selective inhibitor of PI3Kδ with excellent preclinical pharmacokinetic (PK) properties. AMG 319 was found to potently inhibit PI3Kδ in enzyme assays (IC50 <10 nM). AMG 319 also potently suppressed the phosphorylation of AKT (pAKTS473) in primary murine splenocytes (IC50<5 nM) after BCR cross linking and demonstrated a less than 10 fold shift in human whole blood B cells using a similar BCR pAKT assay in vitro. In a cell based selectivity screen, AMG 319 was selective for PI3Kδ against other PI3K class I isoforms (200 to >5000 fold). Furthermore, AMG 319 was considered inactive at 10 μM on non-PI3K class I kinases in a broader kinome screen of 402 kinases. In preclinical PK studies, AMG 319 had low systemic clearance, T1/2 range of 2–4 hr, oral bioavailability of >45% and unbound fractions in plasma of 5–19%. Here, we have investigated the potential for AMG 319 to inhibit constitutive PI3K mediated signaling and effects on human B cell line viability. In a broad screen of >20 cell lines derived from B cell malignancies, the majority of lines were found to express PI3Kδ protein, all cells lines expressed the PI3Kα and β isoforms and variable levels of constitutive pAKTS473 were detected. AMG 319 was found to potently suppress constitutive pAKTS473 in the cell lines with IC50 in the low single to double digit nM range. Cellular viability was inhibited by AMG 319 though lines were variably sensitive to drug (range low double digit nM to μM IC50). As cell lines were variably sensitive to AMG 319 as a single agent, we examined if AMG 319 could enhance the efficacy of chemotherapeutic agents in vitro and in vivo. These studies focused on a DLBCL cell line HT which was relatively insensitive to AMG 319 as a single agent (IC50 ∼10 μM) in viability assays even though pAKTS473 was potently suppressed (IC50 ∼ 0.030 μM). Treatment with AMG 319 was found to synergize with the effects of vincristine to reduce cell viability in vitro using a 72 hr viability assay. Next we examined whether the enhanced cytotoxicity using these drugs in combination could be observed in vivo. Using the human B-cell lymphoma HT xenograft model, we found that AMG 319 in combination with vincristine enhanced tumor growth inhibition above that observed with either agent alone. Taken together, these findings suggest that the inhibition of PI3Kδ with AMG 319 may enhance the effects of chemotherapeutic agents in B cell malignancies. In conclusion, AMG 319 is a potent and selective inhibitor of PI3Kδ with excellent PK properties. AMG 319 inhibited constitutive pAKTS473, reduced the viability of B cell lines and synergized with vincristine in vitro and in vivo. The safety, PK and preliminary efficacy of AMG 319 are currently being investigated in a Phase I trial in patients with relapsed or refractory lymphoid malignancies. Disclosures: Sinclair: Amgen: Employment, Stock and Options. Metz:Amgen, Inc: Employment, Stock and Options. Cushing:Amgen, Inc: Employment, Stock and Options. Liu:Amgen, Inc: Employment, Stock and Options. Brake:Amgen, Inc: Employment, Stock and Options. Starnes:Amgen, Inc: Employment, Stock and Options. Means:Amgen, Inc: Employment, Stock and Options. Henne:Amgen, Inc: Employment, Stock and Options. Archibeque:Amgen: Employment, Stock and Options. Mattson:Amgen, Inc: Employment, Stock and Options. Drew:Amgen, Inc: Employment, Stock and Options. Busse:Amgen, Inc: Employment, Stock and Options. Wang:Amgen, Inc: Employment, Stock and Options. Al-Assaad:Amgen, Inc: Employment, Stock and Options. Molineux:Amgen: Employment, Stock and Options.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3017-3017
Author(s):  
Chiara Tarantelli ◽  
Eugenio Gaudio ◽  
Petra Hillmann ◽  
Filippo Spriano ◽  
Ivo Kwee ◽  
...  

Abstract Background. The PI3K/AKT/mTOR pathway is an important therapeutic target in lymphomas. PQR309 is a dual PI3K/mTOR inhibitor that has shown in vitroanti-lymphoma activity (Tarantelli et al, ASH2015) and is in phase 2 trial (NCT02249429, , NCT02723877, NCT02669511). PQR620 is a novel mTORC1/2 inhibitor that has shown preclinical activity in solid tumor models (Beaufils et al, AACR 2016). Here, we present the in vitro and in vivo anti-lymphoma activity of PQR620 as single agent and also the in vivo results of PQR620 or PQR309 containing combinations with the BCL2 inhibitor venetoclax. Materials and Methods. The drug concentration causing 50% inhibition of cell proliferation (IC50) was obtained in lymphoma cell lines [diffuse large B cell lymphoma (DLBCL), no.=26; mantle cell lymphoma (MCL), no.=8; anaplastic large T-cell lymphoma, no.=5; others, no=5] exposed to increasing doses of PQR620 for 72h using a Tecan D300e Digital Dispenser on 384well plates. For in vivo experiments, NOD-Scid (NOD.CB17-Prkdcscid/J) mice were subcutaneously inoculated with 10 x106 (RIVA) or with 5 x106(SU-DHL-6) cells. Results. PQR620 had a median IC50 of 250 nM (95%CI, 200-269 nM) when tested on 44 lymphoma cell lines. Activity was higher in B cell (no.=36) than in T cell tumors (no.=8) (median IC50s: 250 nM vs 450 nM; P=0.002). At 72h, anti-tumor activityof PQR620 was mostly cytostatic and apoptosis induction was seen only in 6/44 cell lines (13%), Sensitivity to PQR620 or apoptosis induction did not differ between DLBCL and MCL, and they were not affected by the DLBCL cell of origin, by TP53 status or by the presence of MYC or BCL2 translocations. The activity of PQR620 as single agent underwent in vivo evaluation in two DLBCL models, the germinal center B cell type DLBCL (GCB-DLBCL) SU-DHL-6 and the acivated B cell-like DLBCL (ABC-DLBCL) RIVA. Treatments with PQR620 (100mg/kg dose per day, Qdx7/w) started with 100-150 mm3 tumors and were carried for 14 (SU-DHL-6) or 21 days (RIVA). In both models, PQR620 determined a 2-fold decrease of the tumor volumes in comparison with control, with significant differences in both SU-DHL-6 (D7, D9, D11, D14; P < 0.005) and RIVA (D14, D16, D19, D21; P < 0.005). Based on the previously reported synergy between the dual PI3K/mTOR inhibitor PQR309 and venetoclax (Tarantelli et al, ASH 2015), we evaluated the combination of the PQR620 or PQR309 with the BCL2 inhibitor venetoclax (100 mg/kg, Qdx7/w) in the SU-DHL-6 model. Both the venetoclax combination with the dual PI3K/mTOR inhibitor and the venetoclax combination with mTORC1/2 inhibitor were superior to the compounds given as single agents, leading to the eradication of the xenografts. The combination of PQR620 with venetoclax showed highly significant differences either versus control or single agents during all days of the experiment (D4, D7, D9, D11, D14; P < 0.001). Similarly, the combination of PQR309 with venetoclax showed highly significant differences versus venetoclax (D7, D9, D11, D14; P < 0.001) and PQR309 (D7, D9, D11; P < 0.005) alone. Conclusions. The novel mTORC1/2 inhibitor PQR620 had in vitro and in vivo anti-lymphoma activity as single agent. In vivo experiments showed that both PQR620 and the dual PI3K/mTOR inhibitor PQR309 can strongly benefit from the combination with the BCL2 inhibitor venetoclax. Disclosures Hillmann: PIQUR Therapeutics AG: Employment. Fabbro:PIQUR Therapeutics AG: Employment. Cmiljanovic:PIQUR Therapeutics AG: Employment, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 39-39
Author(s):  
Kamil Bojarczuk ◽  
Kirsty Wienand ◽  
Jeremy A. Ryan ◽  
Linfeng Chen ◽  
Mariana Villalobos-Ortiz ◽  
...  

Abstract Diffuse large B-cell lymphoma (DLBCL) is a genetically heterogeneous disease that is transcriptionally classified into germinal center B-cell (GCB) and activated B-cell (ABC) subtypes. A subset of both GCB- and ABC-DLBCLs are dependent on B-cell receptor (BCR) signaling. Previously, we defined distinct BCR/PI3K-mediated survival pathways and subtype-specific apoptotic mechanisms in BCR-dependent DLBCLs (Cancer Cell 2013 23:826). In BCR-dependent DLBCLs with low baseline NF-κB activity (GCB tumors), targeted inhibition or genetic depletion of BCR/PI3K pathway components induced expression of the pro-apoptotic HRK protein. In BCR-dependent DLBCLs with high NF-κB activity (ABC tumors), BCR/PI3K inhibition decreased expression of the anti-apoptotic NF-κB target gene, BFL1. Our recent analyses revealed genetic bases for perturbed BCR/PI3K signaling and defined poor prognosis DLBCL subsets with discrete BCR/PI3K/TLR pathway alterations (Nat Med 2018 24:679). Cluster 3 DLBCLs (largely GCB tumors) exhibited frequent PTEN deletions/mutations and GNA13 mutations. Cluster 5 DLBCLs (largely ABC tumors) had frequent MYD88L265P and CD79B mutations that often occurred together. These DLBCL subtypes also had different genetic mechanisms for deregulated BCL2 expression - BCL2 translocations in Cluster 3 and focal (18q21.33) or arm level (18q) BCL2 copy number gains in Cluster 5. These observations prompted us to explore the activity of PI3K inhibitors and BCL2 blockade in genetically defined DLBCLs. We utilized a panel of 10 well characterized DLBCL cell line models, a subset of which exhibited hallmark genetic features of Cluster 3 and Cluster 5. We first evaluated the cytotoxic activity of isoform-specific, dual PI3Kα/δ and pan-PI3K inhibitors. In in vitro assays, the PI3Kα/δ inhibitor, copanlisib, exhibited the highest cytotoxicity in all BCR-dependent DLBCLs. We next assessed the transcriptional abundance of BCL2 family genes in the DLBCLs following copanlisib treatment. In BCR-dependent GCB-DLBCLs, there was highly significant induction of the pro-apoptotic HRK. In BCR-dependent ABC-DLBCLs, we observed significant down-regulation of the anti-apoptotic BFL1 protein and another NF-κB target gene, BCLxL (the anti-apoptotic partner of HRK). We then used BH3 profiling, to identify dependencies on certain BCL2 family members and to correlate these data with sensitivity to copanlisib. BCLxL dependency significantly correlated with sensitivity to copanlisib. Importantly, the BCLxL dependency was highest in DLBCL cell lines that exhibited either transcriptional up-regulation of HRK or down-regulation of BCLxL following copanlisib treatment. In all our DLBCL cell lines, PI3Kα/δ inhibition did not alter BCL2 expression. Given the genetic bases for BCL-2 deregulation in a subset of these DLBCLs, we next assessed the activity of the single-agent BCL2 inhibitor, venetoclax, in in vitro cytotoxicity assays. A subset of DLBCL cell lines was partially or completely resistant to venetoclax despite having genetic alterations of BCL2. We postulated that BCR-dependent DLBCLs with structural alterations of BCL2 might exhibit increased sensitivity to combined inhibition of PI3Kα/δ and BCL2 and assessed the cytotoxic activity of copanlisib (0-250 nM) and venetoclax (0-250 nM) in the DLBCL cell line panel. The copanlisib/venetoclax combination was highly synergistic (Chou-Talalay CI<1) in BCR-dependent DLBCL cell lines with genetic bases of BCL2 deregulation. We next assessed copanlisib and venetoclax activity in an in vivo xenograft model using a DLBCL cell line with PTENdel and BCL2 translocation (LY1). In this model, single-agent copanlisib did not delay tumor growth or improve survival. Single-agent venetoclax delayed tumor growth and improved median survival (27 vs 51 days, p<0.0001). Most notably, we found that the combination of copanlisib and venetoclax delayed tumor growth significantly longer than single-agent venetoclax (p<0.0001). Additionally, the combined therapy significantly increased survival in comparison with venetoclax alone (median survival 51 days vs not reached, p<0.0013). Taken together, these results provide in vitro and in vivo pre-clinical evidence for the rational combination of PI3Kα/δ and BCL2 blockade and set the stage for clinical evaluation of copanlisib/venetoclax therapy in patients with genetically defined relapsed/refractory DLBCL. Disclosures Letai: AbbVie: Consultancy, Other: Lab research report; Flash Therapeutics: Equity Ownership; Novartis: Consultancy, Other: Lab research report; Vivid Biosciences: Equity Ownership; AstraZeneca: Consultancy, Other: Lab research report. Shipp:AstraZeneca: Honoraria; Merck: Research Funding; Bristol-Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bayer: Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1142-1142
Author(s):  
Jennifer Totman ◽  
Dorothy Brach ◽  
Vinny Motwani ◽  
Selene Howe ◽  
Emily Deutschman ◽  
...  

Abstract Introduction: SETD2 is the only known histone methyltransferase (HMT) capable of catalyzing H3K36 trimethylation (H3K36me3) in vivo. It plays an important role in several biological processes including B cell development and maturation, leading to the hypothesis that SETD2 inhibition in these settings could provide anti-tumor effects. The normal process of B cell development/maturation renders B cells susceptible to genetic vulnerabilities that can result in a dysregulated epigenome and tumorigenesis, including in multiple myeloma (MM) and diffuse large B-cell lymphoma (DLBCL). For example, 15%-20% of MM harbors the high risk (4;14) chromosomal translocation, resulting in high expression of the multiple myeloma SET domain (MMSET) gene. MMSET is an HMT that catalyzes H3K36me1 and H3K36me2 formation and extensive scientific work has established overexpressed MMSET as a key factor in t(4;14) myeloma pathogenesis. To the best of our knowledge MMSET has eluded drug discovery efforts, however, since t(4;14) results in high levels of the H3K36me2 substrate for SETD2, inhibiting SETD2 offers promise for targeting the underlying oncogenic mechanism driven by MMSET overexpression in t(4;14) MM patients. In addition, SETD2 loss of function mutations described to date in leukemia and DLBCL are always heterozygous, suggesting a haploinsufficient tumor suppressor role for SETD2. This observation points to a key role for SETD2 in leukemia and lymphoma biology and suggests that therapeutic potential of SETD2 inhibition may also exist in these or similar settings. EZM0414 is a first-in-class, potent, selective, orally bioavailable small molecule inhibitor of the enzymatic activity of SETD2. We explored the anti-tumor effects of SETD2 inhibition with EZM0414 in MM and DLBCL preclinical studies to validate its potential as a therapy in these tumor types. Methods: Cellular proliferation assays determined IC 50 values of EZM0414 in MM and DLBCL cell line panels. Cell line-derived xenograft preclinical models of MM and DLBCL were evaluated for tumor growth inhibition (TGI) in response to EZM0414. H3K36me3 levels were determined by western blot analysis to evaluate target engagement. Combinatorial potential of SETD2 inhibition with MM and DLBCL standard of care (SOC) agents was evaluated in 7-day cotreatment in vitro cellular assays. Results: Inhibition of SETD2 by EZM0414 results in potent anti-proliferative effects in a panel of MM and DLBCL cell lines. EZM0414 inhibited proliferation in both t(4;14) and non-t(4;14) MM cell lines, with higher anti-proliferative activity generally observed in the t(4;14) subset of MM cell lines. The median IC 50value for EZM0414 in t(4;14) cell lines was 0.24 μM as compared to 1.2 μM for non-t(4;14) MM cell lines. Additionally, inhibitory growth effects on DLBCL cell lines demonstrated a wide range of sensitivity with IC 50 values from 0.023 μM to &gt;10 μM. EZM0414 resulted in statistically significant potent antitumor activity compared to the vehicle control in three MM and four DLBCL cell line-derived xenograft models. In the t(4;14) MM cell line-derived xenograft model, KMS-11, robust tumor growth regressions were observed at the top two doses with maximal TGI of 95%. In addition, two non-t(4;14) MM (RPMI-8226, MM.1S) and two DLBCL xenograft models (TMD8, KARPAS422) demonstrated &gt; 75% TGI; with two additional DLBCL models (WSU-DLCL2, SU-DHL-10) exhibiting &gt; 50% TGI in response to EZM0414. In all models tested, the antitumor effects observed correlated with reductions in intratumoral H3K36me3 levels demonstrating on-target inhibition of SETD2 methyltransferase activity in vivo. In vitro synergistic antiproliferative activity was also observed when EZM0414 was combined with certain SOC agents for MM and DLBCL. Conclusions: Targeting SETD2 with a small molecule inhibitor results in significantly reduced growth of t(4;14) MM, as well as non-t(4;14) MM and DLBCL cell lines, in both in vitro and in vivo preclinical studies. In addition, in vitro synergy was observed with EZM0414 and certain SOC agents commonly used in MM and DLBCL, supporting the combination of SETD2 inhibition with current MM and DLBCL therapies. This work provides the rationale for targeting SETD2 in B cell malignancies such as MM, especially t(4;14) MM, as well as DLBCL, and forms the basis for conducting Phase 1/1b clinical studies to evaluate the safety and activity of EZM0414 in patients with R/R MM and DLBCL. Disclosures Totman: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Brach: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Motwani: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Howe: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Deutschman: Epizyme, Inc.: Divested equity in a private or publicly-traded company in the past 24 months, Ended employment in the past 24 months. Lampe: Epizyme, Inc.: Divested equity in a private or publicly-traded company in the past 24 months, Ended employment in the past 24 months. Riera: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Tang: Epizyme, Inc.: Divested equity in a private or publicly-traded company in the past 24 months, Ended employment in the past 24 months. Eckley: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Alford: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Duncan: Epizyme, Inc.: Divested equity in a private or publicly-traded company in the past 24 months, Ended employment in the past 24 months. Farrow: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Dransfield: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Raimondi: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Thomeius: Foghorn Therapeutics: Current Employment, Current equity holder in publicly-traded company. Cosmopoulos: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Kutok: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company.


PLoS ONE ◽  
2012 ◽  
Vol 7 (10) ◽  
pp. e47361 ◽  
Author(s):  
Troy A. Luster ◽  
Ipsita Mukherjee ◽  
Jeffrey A. Carrell ◽  
Yun Hee Cho ◽  
Jeffrey Gill ◽  
...  
Keyword(s):  
B Cell ◽  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4521-4521
Author(s):  
Ramzi M. Mohammad ◽  
Yuan Sun ◽  
Shaomeng Wang ◽  
Amro Aboukameel ◽  
Ayad M. Al-Katib

Abstract Non-Hodgkin’s lymphoma (NHL) tumors include a group of heterogeneous diseases with varying natural histories and responsiveness to therapy; nonetheless, overexpression of Bcl-2 protein is seen in more than 80% of NHL. Throughout the years our laboratory succeeded in establishing a panel of B-cell lines representing various maturational stages of NHL. In this study, we have utilized a structure-based strategy to design a new class of potent nonpeptidic small-molecule inhibitor (SMI) of Bcl-2 family. TW-37, a lead compound that was designed to target the BH3 binding groove of antiapopototic Bcl-2 proteins. It binds to Bcl-2, Bcl-XL and Mcl-1 with Ki values of 290 nM, 1110 nM and 260 nM, respectively. TW-37 showed significant antiproliferative effect against Pre-B-Acute Lymphoblastic Leukemia (WSU-pre-B-ALL), Diffuse Large Cell Lymphoma (WSU-DLCL2), Follicular Small Cleaved Cell Lymphoma (WSU-FSCCL), Waldenstrom’s Macroglobulinemia (WSU-WM) and primary cells obtained from lymphoma patients, despite variations in their anti- and pro-apoptotic Bcl-2 proteins (Bcl-2, Bcl-XL, Mcl-1, Bax, Bak, Bim, Bad, BUMA and Bok). The IC50 for TW-37 varied from 165 nM in the WSU-FSCCL to 300 nM in WSU-DLCL2 cells. Apoptosis was independent of proliferative status or pathological classification of B-cell tumor. TW-37 was able to block Bim-Bcl-XL and Bim-Mcl-1 eterodimerization and induces apoptosis via activation of caspases -9, -3, PARP and DNA fragmentation. Although cell lines and patient samples expressed multiple Bcl-2 family proteins at various levels, TW-37 induced apoptosis was only strongly associated with Bax:Mcl-1 ratio. TW-37 administered to tumor-bearing SCID mice led to significant tumor growth inhibition (T/C), tumor growth delay (T-C) and Log10kill, when used at its maximum tolerated dose (40 mg/kg x 3days) via tail vein. failed to induce changes in the Bcl-2 proteins levels suggests that assessment of baseline Bcl-2 family proteins can be used to prognosticate the response to drug. These findings indicate activity of TW-37 across the spectrum of human B-cell tumors and support the concept of targeting the Bcl-2 system as a therapeutic strategy in the treatment of B-cell lymphoma.


Blood ◽  
2015 ◽  
Vol 125 (23) ◽  
pp. 3588-3597 ◽  
Author(s):  
Luke F. Peterson ◽  
Hanshi Sun ◽  
Yihong Liu ◽  
Harish Potu ◽  
Malathi Kandarpa ◽  
...  

Key Points Deubiquitinases Usp9x and Usp24 regulate Mcl-1 and myeloma cell survival. Small-molecule–mediated Usp9x/Usp24 inhibition induces apoptosis and blocks myeloma tumor growth in vivo.


Author(s):  
Xiaodong Yang ◽  
Anne Steino ◽  
Jeffrey Bacha ◽  
Dennis Brown ◽  
Sabine Mueller

Despite decades of trials, the prognosis for diffuse intrinsic pontine gliomas (DIPG) remains dismal. DIPG is inoperable and standard treatment is radiation alone, as the addition of chemotherapeutic agents, such as temozolomide, have not improved survival. In addition to inherent chemoresistance, treatment of DIPG is impeded by an intact blood-brain barrier (BBB). VAL-083 is a structurally unique bi-functional DNA-targeting agent that readily crosses the BBB. VAL-083 forms interstrand DNA crosslinks at N7-guanine, resulting in DNA double-strand breaks (DSB), S/G2-phase cell-cycle arrest, and ultimately cancer cell death. We have previously demonstrated that VAL-083 is able to overcome temozolomide-resistance in vitro and in vivo, and that its cytotoxicity is independent of the DNA-repair enzyme O6-methylguanine DNA-methyltransferase (MGMT). MGMT is almost universally expressed in DIPG and its expression is strongly correlated with temozolomide-resistance. VAL-083’s distinct mechanism-of-action suggests the potential for combination with inhibitors of DNA DSB repair or S/G2 cell-cycle progression (e.g. Wee1 inhibitor AZD1775). Here, we investigated the effects of VAL-083 in combination with radiation, AZD1775 or irinotecan (topoisomerase inhibitor) in three DIPG cell-lines: SF10693 (H3.1), SF8628 (H3.3) and NEM157 (H3.3). VAL-083 showed activity at low uM-concentration in all three cell-lines. In addition, VAL-083 showed synergy with AZD1775 in all three cell-lines. Combined with its ability to cross the BBB, accumulate in brain tumor tissue and overcome MGMT-related chemoresistance, these results suggest VAL-083 as a potentially attractive treatment option for DIPG as single agent or in combination with AZD1775. Combination studies with radiation are ongoing and will be presented at the meeting.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 467-467
Author(s):  
Shyril O'Steen ◽  
Amelia Waltman ◽  
Garrett Booth ◽  
Aimee L Kenoyer ◽  
Margaret Nartea ◽  
...  

Abstract Introduction: An estimated 19,970 Americans died of non-Hodgkin lymphoma (NHL) in 2015, with diffuse large B-cell lymphoma (DLBCL) accounting for roughly 30% of newly diagnosed NHL. Our study focuses on three NHL subtypes: germinal center (GCB)-DLBCL, the most common DLBCL subtype; activated (ABC)-DLBCL, a particularly aggressive and high-risk subtype; and mantle cell lymphoma (MCL), considered incurable. Constitutive B-cell receptor signaling is implicated in the pathogenesis of ABC-DLBCL and MCL and may couple with aberrant apoptotic BCL-2 pathway proteins. The BCL-2 inhibitor venetoclax is a promising targeted agent that promotes apoptosis in a variety of NHL subtypes, but is almost never curative as a single agent. Radiotherapy promotes apoptosis by creating DNA strand breaks, and we hypothesized that the combination of radiotherapy and venetoclax would act synergistically in NHL to increase the probability of cures. Methods: We tested in vitro killing efficacy of sublethal 137Cesium irradiation combined with venetoclax in 15 cell lines, representing a diversity of NHL subtypes. Cells were treated with 137Cesium and venetoclax in 8 x 8 dose combination matrices, incubated 72-120 hrs, then assayed for viability with Celltiter-Glo (Promega). The degree of treatment antagonism, additivity, or synergism was determined using isobolographic analyses. For in vivo studies, we tested combinations of venetoclax with either 137Cesium total body irradiation (TBI), or CD20 pre-targeted radioimmunotherapy (PRIT), in threetumor models chosen for divergent single agent sensitivities. Tumor xenografts of Rec-1 (MCL), U2932 (ABC-DLBCL), and SU-DHL-6 (GCB-DLBCL) were produced by subcutaneous flank injection of 10 x 106 cells in male and female NOD.Cg-Rag1tm1Mom Il2rgtm1Wjl/SzJ (NRG) mice. When tumor volumes were 50 mm3, mice (n = 8-12/group) were treated with either venetoclax (100-200mg/kg daily for 10-30 days), diluent control, TBI (single dose, 6-10 Gy 137Cesium), or a combination of venetoclax and TBI. In PRIT studies, mice were coinjected with 300µg unlabeled streptavidin-conjugated anti-CD20 antibody (murine IgG2a) and 400µg HB8181 (IgG2a isotype control to block non-specific binding) in place of TBI. Twenty-one hours later, 5.8 nmol biotin-galactose "clearing agent" was administered, followed in 3 hours by 1.2 nmol DOTA-biotin labeled with 400, 800, or 1200 µCi of 90Y (14.8, 29.6, or 44.4 MBq, respectively). Results: In vitro, 10 of 15 lymphoma cell lines responded synergistically to combined radiotherapy and venetoclax, including GCB-DLBCL, ABC-DLBCL and MCL lines (p < .04 in 10 cell lines). In vivo, each of 3 lymphoma models responded synergistically to combination therapy. In mice bearing Rec-1 xenografts, venetoclax alone did not affect mean survival time (p = .32), 8 Gy TBI lengthened survival by 44% compared to controls (p < .0001), but TBI combined with venetoclax tripled survival time compared to controls (p < .0001, combination group > TBI alone). The SU-DHL-6 model produced similar results. In the U2932 model, tumors disappeared during venetoclax monotherapy, but recurred in all mice, such that mean survival time doubled compared to controls (p = .0001). Six Gy TBI had no effect (p = .73), but combining TBI with venetoclax tripled survival time compared to controls (p = .0003, combination group > venetoclax alone). Using PRIT in place of TBI produced yet greater efficacy. In Rec-1 bearing mice, venetoclax had no effect alone (p = .12), 800µCi PRIT lengthened survival time 111% beyond controls (p = .0001), while the combination extended survival 483% beyond controls and cured 40% (p = .001, combination group > PRIT alone). In the U2932 xenograft model, venetoclax alone doubled survival time compared to controls (p < .0001) and 800µCi PRIT alone doubled survival and cured 30% (Fig. 1, p < .0001). Combination treatments cured 100% (Fig. 1). Conclusion: In vitro and in vivo results support our hypothesis that radiotherapy combines effectively with venetoclax to treat NHL. Despite differences in single agent sensitivity, xenograft models of GCB-DLBCL, ABC-DLBCL and MCL all responded synergistically to combinations of either TBI or PRIT with venetoclax. PRIT combinations with venetoclax produced cures (Fig. 1) without detectable toxicity, and merit clinical preference. Ongoing studies examine predictive biomarkers and optimal treatment protocols for therapeutic efficacy. Disclosures Gopal: Paid Consultancy- Gilead, Janssen, Seattle Genetics, Spectrum, Research funding- Gilead, Janssen, Pfizer, BMS, Merck, Teva, Takeda, Spectrum, Seattle Genetics: Consultancy, Honoraria, Research Funding.


Blood ◽  
2017 ◽  
Vol 130 (18) ◽  
pp. 2018-2026 ◽  
Author(s):  
Maureen C. Ryan ◽  
Maria Corinna Palanca-Wessels ◽  
Brian Schimpf ◽  
Kristine A. Gordon ◽  
Heather Kostner ◽  
...  

Key Points SGN-CD19B is broadly active in vitro against malignant B-cell lines, including double-hit and triple-hit lymphoma cell lines. SGN-CD19B shows significant antitumor activity in vivo in preclinical models of B-NHL and B-cell–derived acute lymphoblastic leukemia.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4848-4848
Author(s):  
Victoria Walker ◽  
Nicolas E S Guisot ◽  
Stuart Best ◽  
Fatima Talab ◽  
Catherine L Lucas ◽  
...  

Abstract The B-cell receptor (BCR) signaling pathway is required for the survival, activation, proliferation and differentiation of B-cells. Bruton's Tyrosine Kinase (BTK) is a member of the Tec protein tyrosine kinase family that has emerged as an attractive target for the treatment of B-cell malignancies due to the critical role it plays in BCR signaling. Redx Oncology has developed novel differentiated small molecule inhibitors of BTK, combining current best-in-class potency with distinct selectivity profiles, which are suitable for oral once daily dosing. Here we present REDX05194, the result of a successful lead optimization of our proprietary BTK inhibitor series. REDX05194 is a highly selective, covalent BTK inhibitor displaying subnanomolar binding affinity for BTK (0.39 nM) and nanomolar potency towards BTK in a biochemical assay (3.67 nM). In cell proliferation assays, REDX05194 showed significant in vitro potency against ABC-DLBCL cell lines inhibiting the growth of both TMD-8 (0.89 nM) and OCI-Ly10 (1.36 nM) cells. Analysis of BCR signaling in several lymphoma cell lines, including cell lines of ABC-DLBCL, MCL and FL origin, revealed that treatment with REDX05194 inhibits BTK autophosphorylation and downstream activation of PLCγ2. In human PBMCs, REDX05194 inhibited anti-IgM stimulated upregulation of the CD69 activation marker in CD19 positive B-cells. In addition, using a fluorescent probe that binds to BTK, occupancy of BTK in PBMCs has been demonstrated in response to increasing concentrations of REDX05194. To assess selectivity, 456 kinases were screened at 1 μM, confirming that REDX05194 does not significantly inhibit other kinases involved in BCR signaling (e.g. Syk, Lyn). Furthermore, REDX05194 was shown to have high selectivity versus structurally related cysteine-containing kinases such as ITK in binding assays, and EGFR as demonstrated in both binding and cellular assays. REDX05194 also has a favorable in vitro safety profile and drug-like properties, displaying an improved CYP profile and solubility compared to competitor compounds. REDX05194 demonstrated in vivo efficacy in a mouse collagen-induced arthritis (CIA) model. At 10 mg/kg and 30 mg/kg QD, REDX05194 significantly improved all clinical readouts, including disease severity, compared to the vehicle group. Histological data showed that approximately 1/3 of the mice had no or minimal pannus infiltration and no bone resorption, or had bone resorption restricted to small areas. These findings demonstrate potential clinical efficacy and a dose response. In conclusion, REDX05194 is a highly selective and potent BTK inhibitor with proven efficacy in several lymphoma cell lines and human PBMCs and in vivo efficacy demonstrated in a mouse CIA model. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document