Redirected CD4+ T Cells Using WT1-Specific T-Cell Receptor Gene Transfer Can Supply Multifactorial Help to Enhance the Anti-Leukemia Reactivity Mediated by Similarly Redirected CD8+ T Cells Using the Identical Gene Transfer

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 645-645
Author(s):  
Toshiki Ochi ◽  
Hiroshi Fujiwara ◽  
Sachiko Okamoto ◽  
Hiroaki Asai ◽  
Yukihiro Miyazaki ◽  
...  

Abstract Abstract 645 [Purpose] Redirected T-cell-based anti-cancer adoptive therapy using cancer antigen-specific T-cell receptor (TCR) gene transfer has clinically shown promise, however there still remain considerable issues of achieving better clinical efficacy. For this purpose, helper function provided by concurrent CD4+ T cells should be evidently considerable. In this study, to achieve the enhanced anti-leukemia functionality mediated by redirected CD8+ T cells using WT1-specific TCR gene transfer, we in detail examined functionalities mediated by similarly redirected CD4+ T cells using the identical TCR gene transfer.[Methods] HLA-A*24:02-restricted and WT1235-243-specific codon-optimized TCR α/β genes were inserted into the novel retroviral vector encoding shRNAs for endogenous TCRs (WT1-siTCR vector). (1) Cognate antigen-responsive cytokine production mediated by WT1-siTCR transduced CD4+ T cells was assessed using cytokine beads array and ELISA assay. (2) Expression of CD40L and OX40 on redirected CD4+ T cells stimulated by WT1 peptide ligation was assessed using flow cytometer. (3) Impact caused by redirected CD4+ T cells on each magnitude of WT1-specific cytotoxicity, target-responsive proliferation and transition to central memory T-cell phenotype of WT1-siTCR transduced CD8+ T cells was measured using 51Cr-release assay, CD107a assay, intracellular IFN-γ assay and CFSE assay. (4) Chemokines produced by redirected CD4+ T cells stimulated using WT1 peptide was comprehensively assessed using real-time PCR. Consequent chemotaxis of redirected CD8+ T cells toward those stimulated redirected CD4+ cells was validated using transwell experiments. (6) Finally, anti-leukemia reactivity against autologous leukemia cells mediated by patients' redirected CD8+ T cells was similarly examined in the presence or absence of such autologous CD4+ T cells. [Results] First, in this study, those redirected CD4+ T cells hardly became positive for intracellular FoxP3, a crucial marker for regulatory T cell phenotype. In response to the WT1 peptide, WT1-siTCR transduced CD4+ T cells produced Th1 cytokines; IL-2, IFN-γ and TNF-α, in the context of HLA-A*24:02, which also needed HLA class II molecules on target cells. Magnitudes of WT1-responsive CD107a expression, IFN-γ production and cytotoxicity mediated by WT1-siTCR transduced CD8+ T cells were efficiently enhanced in the presence of redirected, but not non-redirected CD4+ T cells. Similarly, in the presence of those redirected CD4+ T cells, redirected CD8+ T cells expressing WT1-specific TCR increased in number and the transition to central memory T-cell phenotype (CD45RA−CD62L+) of those CD8+ T cells was stimulated in response to the stimulation with WT1 peptide. WT1 peptide ligation stimulated those redirected CD4+ T cells to express membrane-bound OX40, which is involved in the formation of central memory CD8+ T cells. WT1 peptide ligation also stimulated the redirected CD4+ T cells to produce chemokines; CCL3 and CCL4. Redirected CD8+ T cells expressed the receptor for these chemokines, CCR5; efficient migration of redirected CD8+ T cells toward redirected CD4+ T cells stimulated with WT1 peptide was obviously observed in transwell experiments. Finally, redirected CD4+ T cells isolated from patients with leukemia successfully provided Th1 helper function to autologous redirected CD8+ T cells to enhance the anti-leukemia reactivity; cytotoxicity, proliferation and formation of central memory T cells, in response to autologous leukemia cells, in vitro. [Conclusion] Although further investigations are warranted, concurrently adopted WT1-siTCR introduced CD4+ T cells seems feasible to enhance the efficacy of WT1-targeting redirected T-cell-based adoptive therapy for treatment of human leukemia. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2668-2668 ◽  
Author(s):  
Alice Bertaina ◽  
Perla Filippini ◽  
Valentina Bertaina ◽  
Barbarella Lucarelli ◽  
Aurelie Bauquet ◽  
...  

Abstract Background Blinatumomab is a bi-specific monoclonal antibody designed to engage and tether cytotoxic T-cells (CTL) to CD19-expressing target B cells. An ongoing phase I multicenter study in pediatric patients with relapsed/refractory B-cell precursor acute lymphoblastic leukemia (BCP-ALL) has shown that blinatumomab induces morphological and molecular remissions, defined as minimal residual disease (MRD) levels <10-4, in 47% of patients [Gore L, et al. J Clin Oncol 31, 2013 (suppl; abstr 10007)]. It is presently unknown whether and to what extent blinatumomab affects T-cell phenotype and function in pediatric patients with BCP-ALL. Patients and Methods Eight children diagnosed with relapsed/refractory BCP-ALL at the Bambino Gesù Children’s Hospital in Rome (median age at diagnosis 5.8 years, range 0.5-14.6) received blinatumomab as continuous intravenous infusion for 28 consecutive days, followed by a 2-week drug-free period. Four out of 8 patients were given repeated treatment courses. Peripheral blood samples were collected before treatment (day 0) and weekly thereafter, for 4 consecutive weeks. Bone marrow (BM) aspirates were available on days 0 and +29 of each drug course. Peripheral blood mononuclear cells (PBMC) were labeled with appropriate combinations of fluorochrome-conjugated monoclonal antibodies to quantitate naïve/memory T cells, αβ/γδ-expressing T cells and other immune effectors with potential anti-leukemia activity, such as CD3+CD56+ natural killer (NK) T cells and CD3-CD56+ NK cells. T-cell production of interferon (IFN)-γ, interleukin (IL)-4 and IL-17 was measured at the single-cell level, after short-term (4-hour) stimulation with phorbol myristate acetate (PMA) and ionomycin. The TCR-Vβ Repertoire Kit® (Beckman Coulter, Milan, Italy) allowed the flow cytometry analysis of 24 different Vβ specificities on T cells, thus covering approximately 70% of the normal human TCR-Vβ repertoire. Results Peripheral blood lymphocytes reached their nadir on day +1 (median 300/µL of blood [inter-quartile range 40-380] compared with 1,080/µL of blood at baseline [inter-quartile range 360-2,310]; p=0.0037 by Mann-Whitney U test for paired data), expanded within 7 days up to 3.5-fold above baseline, and included both CD4+ and CD8+ T cells. By contrast, the frequency of both CD3+CD56+ NK T cells and CD3-CD56+ NK cells remained unchanged compared to baseline. IFN-γ production by patient-derived CD4+ T cells exceeded that observed in CD4+ T cells from healthy controls by 2-fold, indicating robust T helper type 1 (Th1) polarization. The frequency of Th2/Th17 cells, defined as CD4+IL-4+ and CD4+IL-17+ cells, respectively, was not different after treatment compared to baseline. CD31 expression on recovering CD45RA+ naïve T cells, a surrogate phenotypic feature for recent thymic emigrants (RTEs), suggested that thymic output may contribute to T-cell expansion after blinatumomab administration. Non-significant changes in the relative proportion of TCR-αβ and TCR-γδ-expressing CD3+ T cells were detected after treatment (median 79.5% TCR-αβ+ T cells and 19.3% TCR-γδ+ T cells among total CD3+ cells) compared with baseline (median 87.4% TCR-αβ+ T cells and 12.2% TCR-γδ+ T cells among total CD3+ cells). Importantly, both CD3+CD8bright T cells and NK cells expressed lytic granule proteins, such as perforin and granzyme-B, at levels that increased during treatment. The analysis of Vβ TCR repertoire revealed a restricted usage of single Vβ domains by BM-resident CD8+ T cells, but not by CD4+ T cells. Specifically, the sum of Vβ within CD8+ T cells in the BM averaged 56.7±6.2% after blinatumomab, compared with 78±5.1% in healthy controls (p=0.04; Mann-Whitney U test for unpaired data). Conclusions Blinatumomab expands both CD31+CD45RA+ thymic-naïve and memory T cells with heightened IFN-γ production and is highly effective at clearing MRD in children with BCP-ALL. Skewing of the Vβ repertoire within BM-resident CD8+ T cells may be consistent with clonal expansions. Disclosures: Zugmaier: Amgen: Employment.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A161-A161
Author(s):  
Diana DeLucia ◽  
Tiffany Pariva ◽  
Roland Strong ◽  
Owen Witte ◽  
John Lee

BackgroundIn advanced prostate cancer (PCa), progression to castration-resistant PCa (CRPC) is inevitable and novel therapies for CRPC are needed. Adoptive transfer of T cells targeting tumor antigens is a promising approach in the cancer field. Unfortunately, identifying antigens expressed exclusively in prostate tumor cells has been challenging. Since the prostate is not an essential organ, we alternatively selected prostate-restricted epithelial antigens (PREAs) expressed in both malignant and normal prostate tissue for transgenic T cell studies.MethodsRNA-seq data sets identifying genes enriched in PCa were cross-referenced with the NIH Genotype-Expression database to identify PREAs. Using a novel molecular immunology approach, select PREAs and major histocompatibility complex class I (MHC-I) molecules were co-expressed in HEK293F cells, from which MHC–peptide complexes were efficiently isolated. Peptides were eluted and sequenced by mass spectrometry. Peptide–MHC binding was validated with a T2 stabilization assay and peptide immunodominance was determined using an interferon-γ (IFN-γ) ELISpot assay following stimulation of healthy HLA-A2+ peripheral blood mononuclear cells (PBMC) with peptide pools. Following peptide stimulation, CD8+ T cells with peptide-specific T cell receptors (TCR) were enriched by peptide–MHC-I dextramer labeling and fluorescence activated cell sorting for single cell TCR α/β chain sequencing.ResultsWe identified 11 A2+ peptides (8 previously unpublished) from prostatic acid phosphatase (ACPP), solute carrier family 45 member 3 (SLC45A3), and NK3 homeobox 1 (NKX3.1) that bound to HLA-A2 with varying affinities. Extended culture stimulation of PBMC with peptide pools from each PREA, compared to the standard overnight culture, revealed a greater number of IFN-γ producing cells overall and a greater breadth of response across all the peptides. Antigen specific CD8+ T cells were detectable at low frequencies in both male and female healthy PBMC for 7 of the 11 peptides. Dextramer-sorted antigen-specific cells were used for single-cell paired TCR αβ sequencing and transgenic T cell development.ConclusionsThrough this work we identified HLA-A2-presented antigenic peptides from the PREAs ACPP, SLC45A3, and NKX3.1 that can induce the expansion of IFN-γ producing CD8+ T cells. Through peptide–MHC-I dextramer labeling, we isolated PREA-specific CD8+ T cells and characterized TCR αβ sequences with potential anti-tumor functionality. Our results highlight a rapid and directed platform for the development of MHC-I-restricted transgenic CD8+ T cells targeting lineage-specific proteins expressed in prostate epithelia for adoptive therapy of advanced PCa.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 206-206 ◽  
Author(s):  
Sonja Schmucker ◽  
Mario Assenmacher ◽  
Jurgen Schmitz ◽  
Anne Richter

Abstract Adoptive transfer of virus-specific T cells is a promising therapy for the treatment of infections in immunocompromised patients. Virus-specific T cells can readily be obtained from antigen-experienced, but not naïve donors. In this study we describe a cell culture system for the in vitro generation of CMV-specific T cells from naive T cells derived from CMV-seronegative donors. We isolated naïve T cells by magnetic depletion of non-T cells, CD25+ regulatory T cells, and CD45RO+ effector and memory T cells from peripheral blood mononuclear cells (PBMC) of CMV-seronegative donors. These naïve T cells were co-cultured with autologous mature monocyte-derived DC (MoDC) loaded with a pool of overlapping peptides from the CMV protein pp65. CD3-depleted autologous PBMC were used as feeder cells and CD28 antibody, IL-2, IL-7, and IL-15 were added to the culture. Already only 9–13 days after starting the priming culture, frequencies of 0.0024% and 0.009% pp65495–503/A2-tetramer+ cells among CD8+ T cells were found for 2 HLA-A2+ blood donors. In contrast pp65495–503/A2-tetramer+ T cells were not detectable when naive T cells were cultured with unpulsed MoDC. Tetramers are suitable tools for the identification of antigen-specific T cells but are restricted to single epitopes of mainly CD8+ T cells. To analyze primed CD4+ T cells as well as CD8+ T cells having specificities other than for the peptide pp65495–503, we looked for upregulation of the activation marker CD137 after a second stimulation and found increased frequencies of CD137+ CD4+ T cells as well as CD137+ CD8+ T cells in the pp65-primed cell cultures only when restimulated with the peptide pool of pp65. Because IFN-γ is important for the control of CMV infection, we studied the capability of the in vitro primed pp65-specific CD4+ and CD8+ T cells to produce this cytokine. Restimulation of the T cells with pp65 peptide pool induced IFN-γ secretion in up to 3.9% of the CD8+ T cells and up to 3.8% of the CD4+ T cells in each of six donors tested. No specific IFN-γ production was detected after restimulation with an irrelevant IE-1 peptide pool. As expected the frequency of pp65-specific T cells in the priming cultures is low. For generation of T cell lines, we magnetically enrich pp65- specific T cells according to their IFN-γ secretion using the cytokine secretion assay technology. After further cultivation for 2 weeks the antigen-specificity of the expanded T cells was again evaluated. Only if restimulated with the pp65 peptide pool 56.6% of the CD4+ T cells showed upregulated expression of the activation marker CD154 (CD40L). Cytokine analysis of the cells revealed IFN-γ production in 40.2% of the CD4+ T cells, of which 36% co-expressed IL-2, indicating the functionality of the in vitro primed and expanded T cells. In conclusion, we established a cell culture system for in vitro priming of CMV-specific CD4+ and CD8+ T cells derived from peripheral blood of donors not infected by CMV. This should extend the application of adoptive T cell therapy to patients for whom immune donors are not available.


Blood ◽  
2008 ◽  
Vol 112 (6) ◽  
pp. 2400-2410 ◽  
Author(s):  
Yoshimi Enose-Akahata ◽  
Unsong Oh ◽  
Christian Grant ◽  
Steven Jacobson

AbstractCD8+ T cells contribute to central nervous system inflammation in human T-cell lymphotropic virus type I (HTLV-I)–associated myelopathy/tropical spastic paraparesis (HAM/TSP). We analyzed CD8+ T-cell dysfunction (degranulation and IFN-γ production) and have demonstrated that CD8+ T cells of patients with HAM/TSP (HAM/TSP patients) spontaneously degranulate and express IFN-γ in ex vivo unstimulated culture. CD8+ T cells of HTLV-I asymptomatic carriers and healthy donors did not. Spontaneous degranulation was detected in Tax11-19/HLA-A*201 tetramer+ cells, but not in CMV pp65 tetramer+ cells. Interestingly, degranulation and IFN-γ production in CD8+ T cells was induced by coculture with autologous CD14+ cells, but not CD4+ T cells, of HAM/TSP patients, which correlated with proviral DNA load in CD14+ cells of infected patients. Moreover, the expression of IL-15, which induced degranulation and IFN-γ production in infected patients, was enhanced on surface of CD14+ cells in HAM/TSP patients. Blockade of MHC class I and IL-15 confirmed these results. Thus, CD8+ T-cell dysregulation was mediated by both virus infection and enhanced IL-15 on CD14+ cells in HAM/TSP patients. Despite lower viral expression than in CD4+ T cells, HTLV-I–infected or –activated CD14+ cells may be a heretofore important but under recognized reservoir particularly in HAM/TSP patients.


2006 ◽  
Vol 74 (10) ◽  
pp. 5790-5801 ◽  
Author(s):  
Sonja Lütjen ◽  
Sabine Soltek ◽  
Simona Virna ◽  
Martina Deckert ◽  
Dirk Schlüter

ABSTRACT Toxoplasma gondii induces a persistent central nervous system infection, which may be lethally reactivated in AIDS patients with low CD4 T-cell numbers. To analyze the role of CD4 T cells for the regulation of parasite-specific CD8 T cells, mice were infected with transgenic T. gondii expressing the CD8 T-cell antigen β-galactosidase (β-Gal). Depletion of CD4 T cells prior to infection did not affect frequencies of β-Gal876-884-specific (consisting of residues 876 to 884 of β-Gal) CD8 T cells but resulted in a pronounced reduction of intracerebral β-Gal-specific gamma interferon (IFN-γ)-producing and cytolytic CD8 T cells. After cessation of anti-CD4 treatment a normal T. gondii-specific CD4 T-cell response developed, but IFN-γ production of intracerebral β-Gal-specific CD8 T cells remained impaired. The important supportive role of CD4 T cells for the optimal functional activity of intracerebral CD8 T cells was also observed in mice that had been depleted of CD4 T cells during chronic toxoplasmosis. Reinfection of chronically infected mice that had been depleted of CD4 T cells during either the acute or chronic stage of infection resulted in an enhanced proliferation of β-Gal-specific IFN-γ-producing splenic CD8 T cells. However, reinfection of chronically infected mice that had been depleted of CD4 T cells in the acute stage of infection did not reverse the impaired IFN-γ production of intracerebral CD8 T cells. Collectively, these findings illustrate that CD4 T cells are not required for the induction and maintenance of parasite-specific CD8 T cells but, depending on the stage of infection, the infected organ and parasite challenge infection regulate the functional activity of intracerebral CD8 T cells.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Kunlong Xiong ◽  
Jinxia Niu ◽  
Ruijuan Zheng ◽  
Zhonghua Liu ◽  
Yanzheng Song ◽  
...  

β-Catenin is a key molecule of canonical Wnt/β-catenin pathway. Its roles and expression profiles in T cells of tuberculosis (TB) remain unclear. The aim of this study was to explore the role of β-catenin in CD4+ T cells and its expression characteristics in patients with pulmonary tuberculosis (PTB). In this study, CD4+ T cell-specific β-catenin conditional knockout mice (β-CAT-cKO mice) were aerosol infected with Mycobacteria tuberculosis (Mtb) H37RV with wild-type mice as controls. Four weeks after infection, the mRNA expression of IFN-γ, TNF-α, and TCF-7 in the lungs of mice was measured. CD4, CD8, β-catenin, IFN-γ, and TNF-α in mononuclear cells from the lungs and spleens were measured by flow cytometry, and the pathological changes of lungs were also observed. Patients with PTB were enrolled, with blood samples collected and PBMCs isolated. The expressions of β-catenin, IFN-γ, TNF-α, and PD-1 in CD4+ and CD8+ T cells were measured by flow cytometry. Results showed a decreased frequency of and reduced IFN-γ/TNF-α mRNA expression and secretion by CD4+ T cells in the lungs of infected β-CAT-cKO mice compared with infected wild-type controls, and only slightly more inflammatory changes were observed in the lungs. β-catenin expressions in CD4+ and CD8+ T cells were significantly decreased in blood cells of patients with severe PTB compared with those in mild PTB. The stimulation of peripheral blood mononuclear cells (PBMCs) with lithium chloride (LiCl), a stimulant of β-catenin, resulted in the increase in CD4+ T cell frequency, as well as their secretion of IFN-γ and TNF-α. β-Catenin demonstrated a moderately positive correlation with PD-1 in CD4+ T cells. β-Catenin along with PD-1 and IFN-γ in CD4+ T cells had a high correlation with those in CD8+ T cells. In conclusion, β-catenin may be involved in the regulation of Th1 response and CD4+ T cell frequency in TB.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3153-3153
Author(s):  
Yukihiro Miyazaki ◽  
Hiroshi Fujiwara ◽  
Toshiki Ochi ◽  
Sachiko Okamoto ◽  
Hiroaki Asai ◽  
...  

Abstract Abstract 3153 Purpose: In antitumor adoptive immunotherapy, the utility of tumoricidal CD8+ T cells are mainly highlighted, while in tumor immunity, the importance of tumor-reactive CD4+ T cells is also well documented. However, because the number of well-characterized tumor-associated epitopes recognized by CD4+ T cells still remains small, application of tumor-reactive CD4+ T cells is limited. In order to circumvent this drawback, redirection of CD4+ T cells to well-characterized HLA class I-restricted CD8+ T-cell epitope seems promising. In this study, using an HLA class I-restricted and WT1-specific T-cell receptor (TCR) gene transfer, we, in detail, examined helper functions mediated by those gene-modified CD4+T cells in redirected T cell-based antileukemia adoptive immunotherapy. Methods: HLA-A*2402-restricted and WT1235–243-specific TCR α/β genes were inserted into our unique retroviral vector encoding shRNAs for endogenous TCRs (WT1-siTCR vector), and was employed for gene-modification both of CD4+ and CD8+ T cells to express WT1-specific TCR. (1) WT1 epitope-responsive cytokine production mediated by WT1-siTCR-transduced CD4+ T cells (WT1-siTCR/CD4) was measured using bead-based immunoassay and ELISA assay. (2) WT1 epitope-ligation induced co-stimulatory molecules by WT1-siTCR/CD4 was assessed using flow cytometry. (3) Impacts on WT1 epitope and leukemia-specific responses; cytocidal activity, proliferation and differentiation into memory T-cell phenotype, mediated by WT1-siTCR-transduced CD8+ T cells (WT1-siTCR/CD8) provided by concurrent WT1-siTCR/CD4 were assessed using 51Cr-release assay, CD107a/intracellular IFN-γ assay, CFSE dilution assay and flow cytometry. (4) WT1 epitope-ligation triggered chemokine production mediated by WT1-siTCR/CD4 was assessed using real-time PCR, then chemotaxis mediated by WT1-siTCR/CD8 in response to those chemokines was assessed using a transwell experiment. (5) In vivo tumor trafficking mediated by WT1-siTCR/CD4 was assessed using bioluminescence imaging assay. (6) Finally, WT1-siTCR/CD4-caused in vivo augmentation of antileukemia functionality mediated by WT1-siTCR/CD8 was assessed similarly using a xenografted mouse model. Results: WT1-siTCR/CD4 showed a terminal effector phenotype; positive for transcription factor T-bet, but negative for Bcl-6 or Foxp3. Upon recognition of WT1 epitope, WT1-siTCR/CD4 produced Th1, but not Th2 cytokines in the context of HLA-A*2402, which simultaneously required HLA class II molecules on target cells. WT1 epitope-ligation enhanced WT1-siTCR/CD4 to express cell-surface OX40. In the presence of WT1-siTCR/CD4, but not non-gene-modified CD4, effector functions mediated by WT1-siTCR/CD8 in response to WT1 epitope and leukemia cells, including cytocidal activity based on CD107a expression and IFN-γ production was enhanced. Such augmentation was mediated by humoral factors produced by WT1 epitope-ligated WT1-siTCR/CD4. Additionally, proliferation and differentiation into memory phenotype, notably CD45RA- CD62L+ central memory phenotype, mediated by WT1-siTCR/CD8 in response to both WT1 epitope and leukemia cells were also augmented, accompanied with increased expression of intracellular Bcl-2 and cell-surface IL-7R. Next, CCL3/4 produced by activated WT1-siTCR/CD4 triggered chemotaxis of WT1-siTCR/CD8 which express the corresponding receptor, CCR5. Using bioluminescence imaging, intravenously infused WT1-siTCR/CD4 successfully migrated towards leukemia cells inoculated in a NOG mouse. Finally, co-infused WT1-siTCR/CD4 successfully augmented immediate accumulation towards leukemia cells and antileukemia reactivity mediated by WT1-siTCR/CD8 in a xenografted mouse model. Conclusion: Using GMP grade WT1-siTCR vector, redirected CD4+ T cells to HLA class I-restricted WT1 epitope successfully recognized leukemia cells and augmented in vivo antileukemia functionality mediated by similarly redirected CD8+ T cells, encompassing tumor trafficking, cytocidal activity, proliferation and differentiation into memory cells. The latter seem to support the longevity of transferred antileukemia efficacy. Taking together, coinfusion of redirected CD4+ T cells to HLA class I-restricted WT1 epitope seems feasible and advantageous for the successful WT1-targeting redirected T cell-based immunotherapy against human leukemia. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3871-3871
Author(s):  
Chen Lin ◽  
Shaohua Chen ◽  
Lijian Yang ◽  
Xue Bai ◽  
Yangqiu Li

Abstract Bacterial superantigens (SAgs) are potent T cell activators. Superantigens stimulate some population of T cells, based on Sag binding to specific T cell receptor variable region β chains, a property that distinguishes SAgs from conventional T cell mitogens. The biologic properties of SAgs make them attractive for use in immunotherapy. However, the T cell stimulatory effects of SAgs cannot be confined to specific antigens, its important role might be to enhance the immune effect for tumor antigens. PML-RARα peptide is a specific antigen associated with acute promyelocytic leukemia, which can induce specific proliferation of T cells from healthy human donor in vitro. But the immunogenicity of PML-RARα peptide is weak based on our previous study. In order to investigate the differentiation and proliferation of T cells induced by PML-RARα peptide that combined with Staphyloccucal enterotoxins A(SEA), T cell phenotype, TCR Vβ repertoire usage, clonality and cytotoxicity of T cells were analyzed. Peripheral blood mononuclear cells from healthy donors were cultured with PML-RARα peptide and SEA for 20 days. After induction, the distribution and clonal expansion of TCR Vβ subfamilies of T cells were examined by RT-PCR and GeneScan. The cytotoxicity of T cells induced against NB4 cell lines were examined by Cell Counting Kit-8 (CCK-8). The CD4 and CD8 surface marker on the harvested CD3+ T cells were detected by flow cytometry (FCM). And cytokine levels of IFN-γ, IL-4 and IL-10 in the cultured supernatants were measured by Enzyme-Linked Immunosorbent Assay (ELISA) as well. The results showed that restricted expression of Vβ repertoire (11 Vβ subfamilies) was found, which were Vβ1, Vβ2, Vβ3, Vβ6, Vβ7, Vβ8, Vβ13, Vβ14, Vβ16, Vβ17, Vβ19 subfamilies. Clonal expanded T cells could be identified in some Vβ subfamilies, which were preferentially used in Vβ13 and Vβ14. The specific cytotoxicity of T cells induced by PML-RARα peptide with SEA was higher than that from PML-RARα peptide alone induction group against NB4 cells. The FCM assay showed that the activation of CD8+ T cells was in priority induced by PML-RARα peptide whether with SEA or not, while it came out to be an equal between CD4+ and CD8+ T cells induced only by SEA. And the IFN-γ level of Th1-type cytokine was higher than that of the Th2-type cytokines (IL-4 and IL-8) in both cultured supernatants of T cells induced by PML-RARα peptide with or without SEA. In conclusion, PML-RARα peptide can induce specific T cells with clonal expansions of TCR Vβ subfamilies. SEA could enhance the induction of the specific PML-RARα peptide. The T cells induced by combination of PML-RARα peptide and SEA have higher specific antileukemia effect.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4290-4290
Author(s):  
Kozo Nagai ◽  
Hiroshi Fujiwara ◽  
Toshiki Ochi ◽  
Jun An ◽  
Toshiaki Shirakata ◽  
...  

Abstract Abstract 4290 Background & Purpose: Recently we have identified a novel HLA-A*0201-restricted antigenic 9mer epitope (aa207-215: YLILEYAPL) derived from Aurora-A kinase (Aurora-A) which is capable of generating anti-leukemia cytotoxic T-lymphocytes (CTL).(Blood, 2009) To improve the feasibility of Aurora-A targeting cellular immunotherapy against leukemia, we have established a Aurora A207-215-specific CTL clone, and have obtained the full-length T-cell receptor (TCR) α/β genes for TCR gene transfer. In this study, using human leukemia cell lines and patients' leukemia cells, we examined the anti-leukemia reactivity of engineered T-cells with Aurora-A-specific TCR gene transfer. Methods: Full-length of an HLA-A*0201-restricted and Aurora-A207-215-specific TCR α/β genes (Vα3/J20/Cα, Vβ10.3(12)/J1.1/Cβ1, respectively) were cloned into bicistronic GaLV-pseudotyped retroviral vector. Using Retronectin (Takara Bio. Japan)-coated plates, Aurora-A-specific TCR α/β genes were inserted into lymphocytes. Whether this vector was capable of generating a functional Aurora-A207-215-specific TCR heterodimer was examined using Jurkat/MA cells (kindly gifted from Prof. Erik Hooijberg, Netherlands). The epitope-specific and leukemia specific cytotoxicity and IFN-γ production of gene-modified normal CD8+ and CD4+ T-cells were examined by 51Cr-releasing assay and ELISA. HLA-A*0201-restriction of engineered T-cell responses was examined by inhibition assay with antibodies, and HLA-A*0201 transduced human leukemia cell line: MEG01 which abundantly expresses Aurora-A. In vivo anti-leukemia effect of gene-modified CD8+T-cells was examined using NOD/SCID/γcnull (NSG) mice. Eventually, the on-target adverse effect of these Aurora-A-specific TCR-gene transferred CD8+T-cells against autologous hematopoietic progenitor cells was examined using cord blood CD34+ cells. Results: The Aurora-A specific-TCR expressing retroviral vector was capable of generating a functional TCR in Jurkat/MA cells which could produce luciferase in response to Aurora-A peptide on C1R-A2 cells in a dose dependent manner. Aurora-A-specific TCR-transduced CD8+ T-cells produced IFN-γ and exerted cytotoxicity against Aurora-A peptide-loaded C1R-A2 cells in an HLA-A*0201 restricted fashion. These engineered CD8+ T-cells also killed HLA-A*0201+ leukemia cell line and patient leukemia cells, but not HLA-A*0201+ normal PBMC and normal mitotic PHA-stimulated lymphoblasts. The anti-leukemia effect of These engineered CD8+ T cells was significantly abrogated by the anti-HLA-class I monoclonal antibody (MoAb), but not by anti-HLA-DR-MoAb. These engineered CD8+ T-cells killed HLA-A*0201-transduced MEG01 cells which were abundantly expressing Aurora-A, but not parent HLA-A*0201-negative MEG01 cells. Aurora-A-specific TCR gene transduced CD4+ T-cells produced IFN-γ in response to the epitope recognition, which was also in an HLA-A*0201-restricted fashion. Furthermore, Aurora-A-specific TCR-transduced CD8+ T cells did not damage the viability of autologous cord blood CD34+ cells in vitro. Finally, These engineered CD8+ T-cells successfully inhibited the engraftment and growth of inoculated leukemia cell line cells in the NOD/SCIDγ/cnull mice. Background: In this study, Aurora-A kinase-specific TCR gene transferred T-cells successfully recognized the target epitope and exerted the target-specific cytotoxicity. Additionally these engineered CD8+ T-cells exerted anti-leukemia effect both in vitro and in vivo. While those these transfectants did not damage autologous hematopoietic progenitor cells in vitro. Collectively, the novel anti-leukemia adoptive therapy using Aurora-A-specific TCR-gene transferred T-cells appears promising, and further investigations are warranted for the clinical application. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document