Targeting CD26 with Humanized Monoclonal Antibody, As a Novel Approach to Inhibit Human Osteoclast Differentiation and Subsequent Bone Resorption

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1348-1348
Author(s):  
Hiroko Nishida ◽  
Hiroko Madokoro ◽  
Hiroshi Suzuki ◽  
Michiie Sakamoto ◽  
Chikao Morimoto ◽  
...  

Abstract Abstract 1348 Bone disease is a hallmark of malignancy with osteolytic bone metastasis, including multiple myeloma (MM) and targeting osteoclasts (OCs) to alleviate bone destruction is a component of the standard care for MM. CD26 is a 110-kDa multifunctional membrane-bound glycoprotein, with dipeptidyl peptidase IV (DPPIV) enzyme activity in its extracellular domain and is critical in T-cell activation and several tumor developments, including malignant lymphoma. However, little is known about the role of CD26 in regulating bone remodeling. In this study, we show that CD26 is expressed on normal human osteoclasts and moreover, intensely expressed on activated human osteoclasts with osteolytic bone metastasis, including MM. We explore the function of CD26 in osteoclastgenesis (OCG) and investigate the effects of humanized anti-CD26 monoclonal antibody (huCD26mAb), which has shown promising clinical activity in T-cell lymphoma, on human OC differentiation, maturation and function. We further define the molecular targets of CD26 signaling cascade in OCG and explore the therapeutic potential of huCD26mAb for treating osteolytic bone metastasis. Human bone marrow mononuclear cells (BMMs) were cultured with human M-CSF (25ng/ml) plus sRANKL (50ng/ml) in the absence or presence of huCD26mAb for the indicated times. Then, M-CSF and sRANKL stimulate CD26 expressions during OCG, in a dose-dependent manner. The expression of CD26 up-regulates mitogen-activated protein kinase14 (p38MAPK) phosphorylation. P38MAPK phosphorylation also occurs downstream of RANK signaling in OCs and stimulates its downstream activation of microphthalmia-associated transcription factor (mi/Mitf), which plays an important role in OC function. Importantly, huCD26mAb decreased the number of multinucleated OCs (>3 nuclei) by tartrate-resistant phosphates (TRAP)/CD26 staining and the secretion of TRAP-5b and type 1 collagen; specific mature OC markers. It decreased the size of OCs and the number of nuclei per OC, with significantly defective bone resorption activity, as evidenced by diminished pit formation on fluoresceinated calcium phosphate-coated plates. In contrast, huCD26mAb added after 4- or 7- days' BMM cultures with M-CSF plus sRANKL did not have significant effects on mature osteoclast formation and function. Given these dual roles of CD26 in OCG, we next examined the effects of huCD26mAb on the phosphorylation of p38MAPK in OC precursor cells and mature OCs. At first, in the absence of huCD26mAb, similar amounts of p38MAPK and MKK3/6 (a molecule that is upstream of p38MAPK) were present in OC precursor cells and OCs. In response to RANKL, MKK3/6-p38MAPK was phosphorylated within 15 minutes in OC precursor cells and reached a maximal level within 30 minutes, and was maintained up to 60 minutes. Moreover, mi/Mitf was subsequently rapidly activated and persisted for 24hours. In the presence of huCD26mAb, when huCD26mAb bound to CD26 on OC precursor cells, only the MKK3/6-p38MAPK pathway was specifically rapidly inactivated, as shown by the persistent decrease in the phosphorylation of p38MAPK, together with MKK3/6, starting within 15 minutes of RANKL stimulation. Subsequent mi/Mitf phosphorylation was also persistently inhibited. In contrast, MKK3/6-p38MAPK was not phosphorylated at all in mature OCs after RANKL stimulation, regardless of the absence or presence of huCD26mAb. These results suggest that huCD26mAb suppressed RANKL induced p38MAPK phosphorylation in OC precursor cells, but not in OCs. The activation of other MAPKs including ERK and SAPK/JNK, or NFκB were rapidly induced in response to RANKL both in OC precursor cells and OCs, regardless of the absence or presence of huCD26mAb. Moreover, p38MAPK inhibitor also strongly inhibited OC formation and function through the suppression of p38 MAPK phosphorylation and subsequent mi/Mitf activation in OC precursor cells, but not in OCs. In conclusion, these data demonstrate that targeting CD26 on OC precursor cells with huCD26mAb suppressed human osteoclast differentiation, via the inhibition of MKK3/6-p38MAPK-mi/Mitf phosphorylation pathway and impaired subsequent mature osteoclast formation and function. Our results strongly suggest that targeting OCs with huCD26mAb has a promising alternative therapeutic potential for the treatment of osteolytic bone metastasis, including MM, to reduce the occurrence of total skeletal-related events. Disclosures: No relevant conflicts of interest to declare.

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3498
Author(s):  
So-Yeon Kim ◽  
Younseo Oh ◽  
Sungsin Jo ◽  
Jong-Dae Ji ◽  
Tae-Hwan Kim

Aryl-hydrocarbon receptor (AhR) is a ligand-activated transcription factor and regulates differentiation and function of various immune cells such as dendritic cells, Th17, and regulatory T cells. In recent studies, it was reported that AhR is involved in bone remodeling through regulating both osteoblasts and osteoclasts. However, the roles and mechanisms of AhR activation in human osteoclasts remain unknown. Here we show that AhR is involved in human osteoclast differentiation. We found that AhR expressed highly in the early stage of osteoclastogenesis and decreased in mature osteoclasts. Kynurenine (Kyn), formylindolo[3,4-b] carbazole (FICZ), and benzopyrene (BaP), which are AhR agonists, inhibited osteoclast formation and Kyn suppressed osteoclast differentiation at an early stage. Furthermore, blockade of AhR signaling through CH223191, an AhR antagonist, and knockdown of AhR expression reversed Kyn-induced inhibition of osteoclast differentiation. Overall, our study is the first report that AhR negatively regulates human osteoclast differentiation and suggests that AhR could be good therapeutic molecule to prevent bone destruction in chronic inflammatory diseases such as rheumatoid arthritis (RA).


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Helen J. Knowles

AbstractBone homeostasis is maintained by a balance between osteoblast-mediated bone formation and osteoclast-driven bone resorption. Hypoxia modulates this relationship partially via direct and indirect effects of the hypoxia-inducible factor-1 alpha (HIF-1α) transcription factor on osteoclast formation and bone resorption. Little data is available on the role(s) of the HIF-2α isoform of HIF in osteoclast biology. Here we describe induction of HIF-1α and HIF-2α during the differentiation of human CD14+ monocytes into osteoclasts. Knockdown of HIF-1α did not affect osteoclast differentiation but prevented the increase in bone resorption that occurs under hypoxic conditions. HIF-2α knockdown did not affect bone resorption but moderately inhibited osteoclast formation. Growth of osteoclasts in 3D gels reversed the effect of HIF-2α knockdown; HIF-2α siRNA increasing osteoclast formation in 3D. Glycolysis is the main HIF-regulated pathway that drives bone resorption. HIF knockdown only affected glucose uptake and bone resorption in hypoxic conditions. Inhibition of glycolysis with 2-deoxy-d-glucose (2-DG) reduced osteoclast formation and activity under both basal and hypoxic conditions, emphasising the importance of glycolytic metabolism in osteoclast biology. In summary, HIF-1α and HIF-2α play different but overlapping roles in osteoclast biology, highlighting the importance of the HIF pathway as a potential therapeutic target in osteolytic disease.


Biomolecules ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 157 ◽  
Author(s):  
Beth Lee

Skeletal quantity and quality are determined by processes of bone modeling and remodeling, which are undertaken by cells that build and resorb bone as they respond to mechanical, hormonal, and other external and internal signals. As the sole bone resorptive cell type, osteoclasts possess a remarkably dynamic actin cytoskeleton that drives their function in this enterprise. Actin rearrangements guide osteoclasts’ capacity for precursor fusion during differentiation, for migration across bone surfaces and sensing of their composition, and for generation of unique actin superstructures required for the resorptive process. In this regard, it is not surprising that myosins, the superfamily of actin-based motor proteins, play key roles in osteoclast physiology. This review briefly summarizes current knowledge of the osteoclast actin cytoskeleton and describes myosins’ roles in osteoclast differentiation, migration, and actin superstructure patterning.


2019 ◽  
Vol 6 (6) ◽  
pp. 190360 ◽  
Author(s):  
Liuliu Yan ◽  
Lulu Lu ◽  
Fangbin Hu ◽  
Dattatrya Shetti ◽  
Kun Wei

Osteoclasts are multinuclear giant cells that have unique ability to degrade bone. The search for new medicines that modulate the formation and function of osteoclasts is a potential approach for treating osteoclast-related bone diseases. Piceatannol (PIC) is a natural organic polyphenolic stilbene compound found in diverse plants with a strong antioxidant and anti-inflammatory effect. However, the effect of PIC on bone health has not been scrutinized systematically. In this study, we used RAW264.7, an osteoclast lineage of cells of murine macrophages, to investigate the effects and the underlying mechanisms of PIC on osteoclasts. Here, we demonstrated that PIC treatment ranging from 0 to 40 µM strongly inhibited osteoclast formation and bone resorption in a dose-dependent manner. Furthermore, the inhibitory effect of PIC was accompanied by the decrease of osteoclast-specific genes. At the molecular level, PIC suppressed the phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK1/2), NF-κB p65, IκBα and AKT. Besides, PIC promoted the apoptosis of mature osteoclasts by inducing caspase-3 expression. In conclusion, our results suggested that PIC inhibited RANKL-induced osteoclastogenesis and bone resorption by suppressing MAPK, NF-κB and AKT signalling pathways and promoted caspase3-mediated apoptosis of mature osteoclasts, which might contribute to the treatment of bone diseases characterized by excessive bone resorption.


2016 ◽  
Vol 57 (4) ◽  
pp. R153-R165 ◽  
Author(s):  
Carrie S Shemanko

Prolactin and prolactin receptor signaling and function are complex in nature and intricate in function. Basic, pre-clinical and translational research has opened up our eyes to the understanding that prolactin and prolactin receptor signaling function differently within different cellular contexts and microenvironmental conditions. Its multiple roles in normal physiology are subverted in cancer initiation and progression, and gradually we are teasing out the intricacies of function and therapeutic value. Recently, we observed that prolactin has a role in accelerating the time to bone metastasis in breast cancer patients and identified the mechanism by which prolactin stimulated breast cancer cell-mediated lytic osteoclast formation. The possibility that the prolactin receptor is a marker for metastasis, and specifically bone metastasis, is one that may have to be put into the context of the different variants of prolactin, different prolactin receptor isoforms and intricate signaling pathways that are regulated by the microenvironment. The more complete the picture, the better one can test biomarker identity and design clinical trials to test therapeutic intervention. This review will cover the recent advances and highlight the complexity of prolactin receptor biology.


2011 ◽  
Vol 211 (2) ◽  
pp. 131-143 ◽  
Author(s):  
David J Mellis ◽  
Cecile Itzstein ◽  
Miep H Helfrich ◽  
Julie C Crockett

Osteoclasts are the specialised cells that resorb bone matrix and are important both for the growth and shaping of bones throughout development as well as during the process of bone remodelling that occurs throughout life to maintain a healthy skeleton. Osteoclast formation, function and survival are tightly regulated by a network of signalling pathways, many of which have been identified through the study of rare monogenic diseases, knockout mouse models and animal strains carrying naturally occurring mutations in key molecules. In this review, we describe the processes of osteoclast formation, activation and function and discuss the major transcription factors and signalling pathways (including those that control the cytoskeletal rearrangements) that are important at each stage.


2021 ◽  
Vol 22 (17) ◽  
pp. 9435
Author(s):  
Iona J. MacDonald ◽  
Hsiao-Chi Tsai ◽  
An-Chen Chang ◽  
Chien-Chung Huang ◽  
Shun-Fa Yang ◽  
...  

Osteoblasts and osteoclasts are major cellular components in the bone microenvironment and they play a key role in the bone turnover cycle. Many risk factors interfere with this cycle and contribute to bone-wasting diseases that progressively destroy bone and markedly reduce quality of life. Melatonin (N-acetyl-5-methoxy-tryptamine) has demonstrated intriguing therapeutic potential in the bone microenvironment, with reported effects that include the regulation of bone metabolism, acceleration of osteoblastogenesis, inhibition of osteoclastogenesis and the induction of apoptosis in mature osteoclasts, as well as the suppression of osteolytic bone metastasis. This review aims to shed light on molecular and clinical evidence that points to possibilities of melatonin for the treatment of both osteoporosis and osteolytic bone metastasis. It appears that the therapeutic qualities of melatonin supplementation may enable existing antiresorptive osteoporotic drugs to treat osteolytic metastasis.


2018 ◽  
Vol 19 (11) ◽  
pp. 3436 ◽  
Author(s):  
Eugene Cho ◽  
Jin-Kyung Lee ◽  
Jee-Young Lee ◽  
Zhihao Chen ◽  
Sun-Hee Ahn ◽  
...  

Osteoporosis is caused by an imbalance of osteoclast and osteoblast activities and it is characterized by enhanced osteoclast formation and function. Peptidyl-prolyl cis-trans isomerase never in mitosis A (NIMA)-interacting 1 (Pin1) is a key mediator of osteoclast cell-cell fusion via suppression of the dendritic cell-specific transmembrane protein (DC-STAMP). We found that N,N′-1,4-butanediylbis[3-(2-chlorophenyl)acrylamide] (BCPA) inhibited receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis in a dose-dependent manner without cytotoxicity. In addition, BCPA attenuated the reduction of Pin1 protein during osteoclast differentiation without changing Pin1 mRNA levels. BCPA repressed the expression of osteoclast-related genes, such as DC-STAMP and osteoclast-associated receptor (OSCAR), without altering the mRNA expression of nuclear factor of activated T cells (NFATc1) and cellular oncogene fos (c-Fos). Furthermore, Tartrate-resistant acid phosphatase (TRAP)-positive mononuclear cells were significantly decreased by BCPA treatment compared to treatment with the Pin1 inhibitor juglone. These data suggest that BCPA can inhibit osteoclastogenesis by regulating the expression of the DC-STAMP osteoclast fusion protein by attenuating Pin1 reduction. Therefore, BCPA may be used to treat osteoporosis.


Sign in / Sign up

Export Citation Format

Share Document