Enzastaurin Induces Apoptosis and Cell Cycle Arrest in B-Cell Acute Lymphoblastic Leukemia Cell Lines Through AKT Pathway Inhibition and ß-Catenin Accumulation

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1350-1350
Author(s):  
Nakhle Saba ◽  
Magdalena Angelova ◽  
Patricia Lobelle-Rich ◽  
Laura S Levy

Abstract Abstract 1350 Precursor B-Cell acute lymphoblastic leukemia (B-ALL) is the most common leukemia in children and accounts for 20% of acute leukemia in adults. The intensive induction–consolidation–maintenance therapeutic regimens used currently have improved the 5-year disease free survival to around 80% in children and to 25%-40% in adults. The poorer response in adults is due to the inability to tolerate the intensive chemotherapy, and to the biology of adult disease which is associated with poor-risk prognostic factors. In the present era of target-specific therapy, protein kinase C beta (PKCß) targeting arose as a new, promising, and well-tolerated treatment strategy for a variety of neoplasms, especially in B-cell malignancies. The most frequently examined drug candidate to date is enzastaurin (LY317615.HCl) (ENZ), an acyclic bisindolylmaleimide that is orally administered and selectively inhibits PKCß. PKCß plays a major role in B-cell receptor signaling, but studies describing the role of PKCß in B-ALL are primitive. In the present study, we investigate the effect of ENZ on a variety of B-ALL cells representing the wide spectrum of the disease. Seven B-ALL cell lines were studied: RS4;11 and SEM-K2 [both Pro-B ALL with t(4;11)(q21;q23)], TOM-1 and SUP-B15 [both Ph-positive Pro-B ALL with t(9;22)(q34;q11)], HB-1119 [Pre-B ALL with t(11;19)(q23;p13)], NALM-6 [Pre-B ALL with t(5;12)(q33;p13)], and Reh [Pre-B ALL with t(12;21)(p13;q22)]. Cells were tested against serial dilutions of ENZ (final concentrations: 0.5–20μM) for 24, 48, and 72 hours in flat bottom 96-well plates. MTS assay was performed to quantify cell viability. ENZ induced a dose and time-dependent cell growth inhibition in B-ALL cell lines. RS4;11, SEM-K2, and HB-1119 (all with translocations involving the MLL gene) showed the greatest sensitivity to ENZ, with statistically significant cell growth inhibition starting at 1 μM, a concentration easily achieved in-vivo. TOM-1 and SUP-B15, both Ph-positive ALL, showed the lowest sensitivity to ENZ. The mechanism of ENZ cell growth inhibition was shown by flow cytometric TUNEL assay to involve apoptotic induction and cell cycle inhibition. Because of its relatively high sensitivity to inhibition among B-ALL cells, RS4;11 was selected for further analysis of the effect of ENZ on phosphorylation of AKT and its downstream target GSK3ß. RS4;11 cells were treated with the corresponding IC50 of ENZ for 0.5, 1, 2, 4, 24, and 48 hours. Treatment resulted in a time-dependent loss of AKT phosphorylation, at both ser473 and thr308, and a decrease in GSK3ß phosphorylation starting after 30 minutes and continuing to 48 hours. No effect on total AKT and GSK3ß was observed. By activating GSK3ß, its downstream target ß-catenin was expected to be diminished secondary to phosphorylation and proteasomal degradation. Surprisingly, ENZ induced a rapid and sustained ß-catenin accumulation, in both its nuclear and cytoplasmic forms. This was explained by a transient loss of ß-catenin phosphorylation at ser33-37; no effect on the proteasome activity was observed. Similar effect on total and phosphorylated ß-catenin was observed in all other cell lines. ß-catenin represents a central component of Wnt/ß-catenin canonical pathway which is found to be implicated in ALL pathogenesis. To investigate the effect of ENZ on Wnt/ß-catenin pathway, total RNA (1 μg) from RS4;11 treated for 24 hours with ENZ was profiled on RT2 Profiler™ PCR Array Human WNT Signaling Pathway (SABiosciences) and compared to untreated control. There were 8 genes whose expression changed >3-fold, most prominently c-Myc, c-Jun, and several genes encoding Wnt proteins. This was confirmed by western blot analysis showing that treatment with ENZ resulted in decreased c-Myc and increased c-Jun proteins expression. The latter showed a preliminary effect on p73, a p53 homologue, and is a subject for further investigation. These results indicate that PKCß plays an important role in the malignant process in B-cell ALL, and suggest that ENZ should be considered as a potential treatment, whether in combination or as a single agent monotherapy. Ongoing studies in our lab will detail the mechanism of PKCß inhibition, explain the contribution of ß-catenin accumulation to the cytotoxic effect of ENZ, and possible relationships between PKCß signaling and 11q23 translocation. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2850-2850
Author(s):  
Lorena L. Figueiredo-Pontes ◽  
Ana Silvia G. Lima ◽  
Barbara A. Santana-Lemos ◽  
Ana Paula A. Lange ◽  
Luciana C. Oliveira ◽  
...  

Abstract The effects of TGFβ signaling in tumorigenesis is both cell type and context-dependent. Although this cytokine may behave as tumor suppressor in early stages of malignant transformation, tumor progression is often accompanied by altered TGFβ responsiveness and increased angiogenesis. Acute Promyelocytic Leukemia (APL) is a distinct subtype of Acute Myelogenous Leukemia characterized by rearrangements involving the PML and RARα genes on chromosomes 15 and 17, respectively. The expression of the PML/RARα oncoprotein leads to PML delocalization and functional impairment. Among its physiological roles, PML is a regulator of the TGFβ pathway, and the expression of PML-RARα has been associated with TGFβ resistance to differentiation and cell growth inhibition. Moreover, TGFβ is known to regulate Vascular Endothelial Growth Factor (VEGF) production and response. APL patients present increased bone marrow microvessel density, and the APL cell line NB4 was shown to secrete high levels of VEGF. Our aim was to test on APL the effect of Halofuginone (HF), an alkaloid that has been shown to inhibit TGFβ in other cell types. Cell cultures of NB4 and NB4-R2 cell lines, this latter resistant to ATRA, were treated with increasing doses of HF (6.25, 12.5, 25, 50, 100 ng/ml) and 10−6M of ATRA during 72 hours. Cell proliferation and apoptosis were accessed by flow cytometry using a simultaneous staining with bromodeoxyuridine and 7AAD. In NB4, there was significant cell growth inhibition with HF doses superior to 25 ng/ml (P <0.001). In addition, a 1.5 fold increase in apoptosis was seen with 100 ng/ml (P <0.001). In NB4-R2, cell growth inhibition was observed with 50 and 100 ng/ml and apoptosis with 100 ng/ml of HF (P < 0.001). HF was able to block the cell cycle progression at G1/S transition and, simultaneously, reduce Bcl2 protein expression in both cell lines. Concomitantly, mRNA expression of TGFβ target genes involved in cell cycle regulation was evaluated by real time PCR. Results showed the upregulation of p15, SMAD3, TGFβ and TGFβRI, and downregulation of c-MYC by treatment with high doses of HF (75 and 100 ng/ml). VEFG and TGFβ production was measured by ELISA in supernatants after 72 hours of culture. Significant reduction of VEGF levels was detected in samples treated with HF at doses higher than 25 ng/ml or with ATRA (P=0.018) and a decrease of TGFβ secretion was observed with 50 and 100 ng/ml of HF (P=0.026). Nuclear extracts from cell cultures treated as above were obtained, and western blot analysis showed that higher doses of HF (50 to 100 ng/ml) reduced TGFβ and Smad 4 expression. Our results indicate that HF was able to inhibit TGFβ at protein level and consequently to reduce VEGF production and thus may revert APL aberrant angiogenesis. As TGFβ transcription is at least in part auto-regulated, HF treatment was associated with an increase of TGFβ transcripts. These effects were independent of ATRA sensitivity, since both cell lines presented the same behavior. Although the disruption of TGFβ signaling itself is not sufficient to initiate malignant transformation, it may be a critical second step that contributes to leukemia progression. In this context, HF may have therapeutic potential in APL.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4181-4181
Author(s):  
Lan Pham ◽  
Juan Chen ◽  
Archie Tamayo ◽  
Jerry Bryant ◽  
David Yang ◽  
...  

Abstract Non-Hodgkin Lymphoma (NHL) is the most common hematological malignancy, with B-cell lymphoma (NHL-B) accounting for 85% of all lymphomas. In the United States, there are ~500,000 lymphoma patients currently living with this disease and ~20,000 lymphoma-related deaths occur annually. The current overall cure rate for B-cell lymphoma is estimated at ~30%, indicating that new innovative therapeutic approaches are needed to significantly reduce the high mortality rate, particularly of relapsed/refractory (r/r) NHL-B. The poor quality of life in patients suffering from chronic diseases like cancer has forced many patients to pursue alternative treatment options, including medicinal cannabinoids (CB), in order to improve their clinical prospect/outcomes. Medicinal cannabinoids have been legalized in 23 states and DC for several medical conditions such as cachexia, chronic pain, epilepsy and other similar disorders characterized by seizures, glaucoma, HIV- AIDS, Multiple Sclerosis, muscle spasticity and GI enteritis. Lately however, cannabis has been shown to have a broader biologic activity spectrum with various cannabis compounds functioning as ligands binding the two principle cannabinoid-specific G protein-coupled receptors (GPCR) CB1 (in neural cells), and CB2, in immune lymphoid, particularly B cells, but have also been identified, showing aberrant expression in a wide variety of important human cancers. This suggests not only a wider spectrum of cellular usage of cannabinoids and their cognate receptors, but also their potential utility as novel therapeutic targets. Gene expression profiling data has demonstrated, however, that B-cell lymphoma is one of the top three cancers (glioma and gastric are the other two) showing high expression of CB1 and CB2 receptors. Our studies showed that CB1 receptor is highly expressed in aggressive NHL-B, including mantle cell lymphoma (MCL) and diffuse large B-cell lymphoma (DLBCL) cells in comparison to normal unstimulated (G0) B cells, and that targeting CB1 using an siRNA approach leads to cell growth inhibition. Furthermore, pharmacological approaches targeting CB1 with small molecule antagonists (Rimonabant and Otenabant) inhibited lymphoma cell viability, leading to the induction of apoptosis and G2M cell cycle arrest. Using proteomic approach via reverse-phase protein array (RPPA), we have demonstrated that lymphoma cells treated with the CB1 antagonist Rimonabant showed a robust effect on apoptosis (increases in caspase 3 and 7, Bad, and bak), cell cycle (increases in p27 and cyclin D1), DNA damage (increases in gH2AX), and autophagy (increases in LC3A) associated proteins. In addition, Rimonabant treatment also inhibited several growth and survival pathways, including STAT3, SRC, and b-catenin, while enhancing the PI3K/ATK pathway. Of note, Rimonabant treatment also activated the DNA damage response (DDR) pathway through stimulating two checkpoint kinases (Chk1 and Chk2). Blocking Rimonabant-induced Chk1 and Chk2 with a selective ATP-competitive inhibitor of Chk1 and Chk2 leads to a robust synergistic effect on cell growth inhibition and apoptotic induction, suggesting that blocking the DDR pathway with Chk kinase inhibitors prevents cells recovering from rimonabant-induced DNA damage. These findings suggest that targeting the cannabinoid receptors and the DDR pathway represents a new therapeutic strategy against resistant r/r NHL-B cells. Disclosures Pham: Vyripharm Biopharmaceuticals: Research Funding. Bryant:Vyripharm Biopharmaceuticals: Equity Ownership. Yang:Vyripharm Biopharmaceuticals: Employment.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3534-3534 ◽  
Author(s):  
Nathalie Y Rosin ◽  
Stefan Koehrer ◽  
Ekaterina Kim ◽  
Susan O'Brien ◽  
William G. Wierda ◽  
...  

Abstract Abstract 3534 Acute lymphoblastic leukemia (ALL) is a highly heterogeneous disease. B-cell acute lymphoblastic leukemia (B-ALL) is characterized by uncontrolled proliferation of immature lymphoid blasts with suppression of normal hematopoiesis. Phosphoinositide 3-kinases (PI3K) transmit activation signals from diverse transmembrane receptors, leading to generation of phosphatidylinositol- 3,4,5-trisphosphate (PIP3) which promotes proliferation, differentiation, migration, and survival in lymphocytes and various other cell types. A knockout mouse model of the PI3K isoform p110δ demonstrates a unique role of p110δ (PI3Kδ) in B cell receptor (BCR) signaling. This is corroborated by clinical efficacy of the PI3Kδ inhibitor GS-1101 in mature B cell malignancies, especially in chronic lymphocytic leukemia (CLL). In contrast to mature B cell malignancies, expression and function of PI3Kδ in B-ALL has not been well characterized. We therefore analyzed PI3Kδ expression and effects of the PI3Kδ inhibitor GS-1101 in B-ALL. To screen efficacy of GS-1101 in B-ALL subsets, we performed viability and proliferation assays, using a panel of B-ALL cell lines, derived from different B-cell development stages (Pro-B: REH, RS4;11, Nalm-20, Nalm-21, TOM-1; Pre-B: Nalm-6, Kasumi-2, KOPN-8, SMS-SB, RCH-ACV, 697; Mature: Tanoue, Ball-1 unknown: CCRF-SB). A key downstream effector of PI3K is the serine/threonine kinase Akt, whose phosphorylation is used as a common readout of PI3K activation status. Western Blot analysis of the 15 cell lines showed almost identical levels of phospho-Akt (Ser473) in all tested cell lines, suggesting constitutive PI3K activity. To investigate the ability of GS-1101 to inhibit B-ALL cell proliferation, we performed cell growth experiments. Among the pre-B cell lines 4 of 6 showed a marked decrease in proliferation, 2 other pre-B cell lines showed a minor decrease. In contrast, none of the pro-B or mature B-ALL cell lines were affected by GS-1101. To explore the effects of GS-1101 on cell cycle of B-ALL cells, cell lines were treated with GS-1101 at concentrations ranging from 0.5μM to 5μM. In accordance with the cell growth experiments, G1 phase arrest and reduced numbers of S phase cells were detected in pre-B cell lines after GS-1101 treatment, but not in the pro-B or mature B cell lines. Next, we examined GS-1101 effects on metabolism of B-ALL cells via XTT (sodium 2,3,-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)-carbonyl]-2H-tetrazolium inner salt) staining. Cell lines were treated with GS-1101 concentrations between 0.1μM and 5μM for 3 days prior to XTT measurement. Pre-B cells showed a significant (p-value <0.0001) decrease in normalized absorbance compared to the control (without treatment) indicating a decrease in cellular viability. Finally, preliminary co-culture experiments of primary B-ALL samples and KUSA-H1 bone marrow stromal cells revealed significantly reduced B-ALL cell viability after GS-1101 treatment, signifying that GS-1101 can overcome microenviromental-mediated B-ALL cell protection; this is similar to that in other B cell malignances. In summary, these experiments demonstrate that GS-1101 inhibits growth, cell cycle progression and metabolic activity of pre-B ALL cells. Validation of these data with primary patient samples is ongoing. Disclosures: Lannutti: Gilead Sciences Inc: Employment.


2020 ◽  
Vol 19 (16) ◽  
pp. 2019-2033 ◽  
Author(s):  
Pratibha Pandey ◽  
Mohammad H. Siddiqui ◽  
Anu Behari ◽  
Vinay K. Kapoor ◽  
Kumudesh Mishra ◽  
...  

Background: The aberrant alteration in Jab1 signalosome (COP9 Signalosome Complex Subunit 5) has been proven to be associated with the progression of several carcinomas. However the specific role and mechanism of action of Jab1 signalosome in carcinogenesis of gall bladder cancer (GBC) are poorly understood. Objective: The main objective of our study was to elucidate the role and mechanism of Jab1 signalosome in gall bladder cancer by employing siRNA. Methods: Jab1 overexpression was identified in gall bladder cancer tissue sample. The role of Jab1-siRNA approach in cell growth inhibition and apoptotic induction was then examined by RT-PCR, Western Blotting, MTT, ROS, Hoechst and FITC/Annexin-V staining. Results: In the current study, we have shown that overexpression of Jab1 stimulated the proliferation of GBC cells; whereas downregulation of Jab1 by using Jab1-siRNA approach resulted incell growth inhibition and apoptotic induction. Furthermore, we found that downregulation of Jab1 induces cell cycle arrest at G1 phase and upregulated the expression of p27, p53 and Bax gene. Moreover, Jab1-siRNA induces apoptosis by enhancing ROS generation and caspase-3 activation. In addition, combined treatment with Jab1-siRNA and gemicitabine demonstrated an enhanced decline in cell proliferation which further suggested increased efficacy of gemcitabine at a very lower dose (5μM) in combination with Jab1-siRNA. Conclusion: In conclusion, our study strongly suggests that targeting Jab1 signalosome could be a promising therapeutic target for the treatment of gall bladder cancer.


2013 ◽  
Vol 700 (1-3) ◽  
pp. 13-22 ◽  
Author(s):  
Hui-Yu Xu ◽  
Zhi-Wei Chen ◽  
He Li ◽  
Li Zhou ◽  
Feng Liu ◽  
...  

2003 ◽  
Vol 68 (4) ◽  
pp. 779-791 ◽  
Author(s):  
Petr Čapek ◽  
Miroslav Otmar ◽  
Milena Masojídková ◽  
Ivan Votruba ◽  
Antonín Holý

Heating of 6-(benzylamino)-2-chloro-9-deazapurine (3) with ethanolamine afforded 6-(benzylamino)-2-[(2-hydroxyethyl)amino]-9-deazapurine (8). Its treatment with formaldehyde in alkaline solution, after protection of the OH group with DMTr, led to hydroxymethylation at position 9. Conversion of the hydroxymethyl group to methyl was performed by catalytic hydrogenation under simultaneous deprotection, which resulted in the formation of the 9-deaza analogue 1 of olomoucine. Compound 1 does not exhibit any significant in vitro cell growth inhibition of CCRF-CEM, HeLa and L-1210 cell lines. Cytostatic activity was found in 6-(benzylamino)-9-deazapurine (2) and its 2-chloro derivative 3 in CCRF-CEM cells with IC50 13.3 and 15.8 μM, respectively.


Sign in / Sign up

Export Citation Format

Share Document