Inhibition of AKT/mTOR Signaling Pathway Induces Cell Cycle Arrest and Apoptosis in Acute Myelogenous Leukemia.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2355-2355
Author(s):  
Weina Chen ◽  
Ioannis Grammatikakis ◽  
Jiang Li ◽  
Vassiliki Leventaki ◽  
L. Jeffrey Medeiros ◽  
...  

Abstract Acute myelogeneous leukemia (AML) is a heterogeneous disease and includes a subset of neoplasms that harbor activating mutations of the fms-like tyrosine kinase-3 (FLT3) gene. Mutated FLT3 has recently been shown to activate downstream oncogenic pathways including the PI3K/AKT pathway (Scheijen, et al. Oncogene. 23:3338–3349, 2004; Choudhary, et al. Blood. 106:265–273, 2005). It is known that activated AKT mediates its effects, at least in part, through activation of mammalian target of rapamycin (mTOR). However, the potential role of PI3K/AKT/mTOR signaling pathway in tumor cell survival in AML remains largely unknown. We hypothesized that the PI3K/AKT signaling pathway is activated in AML and contributes to tumor cell survival through activation (phosphorylation) of mTOR and its downstream effectors 4EBP1, p70S6K, ribosomal protein S6 (rpS6), and eIF-4E. We used 3 AML cell lines, including MV4-11 and MOLM-13, that are homozygous and heterozygous for mutated FLT3, respectively, as well as U937 (wild-type FLT3). All 3 cell lines expressed activated (serine 473-phosphorylated) AKT (Ser473pAKT), and phosphorylated 4EBP1, p70S6K and rpS6 shown by Western Blot analysis. Treatment of AML cell lines with LY294002, an inhibitor of PI3K, resulted in a dose-dependent decrease of phosphorylation of AKT, mTOR, 4EBP1, p70S6K, and rpS6. This was associated with decreased cell viability as assessed by trypan-blue exclusion assay. Cell death following inhibition of the PI3K/AKT pathway was predominantly attributed to apoptosis as shown by increased annexin V staining assessed by flow cytometry. These changes were associated with downregulation of the anti-apoptotic proteins cFLIP, Mcl-1, and Bcl-XL that are involved in the extrinsic and intrinsic apoptosis. Cell cycle analysis using flow cytometry also showed that inhibition of PI3K resulted in decreased S-phase and increased G1-phase fraction. These cell cycle changes were associated with increased levels of the cyclin-dependent kinase inhibitor p27 and underphosphorylated Rb in a dose-dependent manner. Similar biologic effects, although to a lesser degree, were found after treatment of AML cells with rapamycin, an inhibitor of mTOR. In addition, expression of activated AKT, mTOR, 4EBP1, p70S6K and rpS6 was assessed in AML tumors (n=19) using tissue microarrays of bone marrow samples and immunohistochemical methods. These included tumors with (n=14) and without (n=5) FLT3 mutations. Using a 10% cutoff to define positivity, 13/19 (68%) expressed Ser473pAKT, 16/18 (89%) mTOR, 15/19 (79%) p4E-BP1, 18/19 (95%) p-p70S6K, and 15/18 (83%) p-rpS6. However, no association between expression of activated AKT, or mTOR signaling proteins and FLT3 mutational status was observed. Our study provides first evidence that the AKT/mTOR signaling pathway is activated in AML cell lines and tumors regardless of FLT3 mutational status. The AKT/mTOR signaling pathway may contribute to cell cycle progression and tumor cell survival in AML. Inhibition of this oncogenic pathway represents a potential target for therapy in patients with AML.

2018 ◽  
Vol 51 (3) ◽  
pp. 1221-1236 ◽  
Author(s):  
Lisi Zeng ◽  
Quanxing Liao ◽  
Zhaowei Zou ◽  
Yuefeng Wen ◽  
Jingshu Wang ◽  
...  

Background/Aims: The development of multidrug resistance (MDR), which results in disease recurrence and metastasis, is a crucial obstacle to successful chemotherapy for patients with gastric cancer (GC). Long non-coding RNAs (lncRNAs) have been found to play various roles in cancer. This study aimed to investigate the effect of XLOC_006753 on the development of MDR in GC cells. Methods: The expression levels of XLOC_006753 in GC patients and MDR GC cell lines (SGC-7901/5-FU and SGC-7901/DDP cell line) were assessed by qRT-PCR. Statistical analyses were conducted to determine the relationship between XLOC_006753 expression and clinical features and to assess the prognostic value of XLOC_006753 for overall survival and progression-free survival. Then, a CCK-8 assay was used to detect cell proliferation ability and chemosensitivity. Flow cytometry was used to detect cell cycle and cell apoptosis. A wound-healing assay and transwell assay were used to detect cell migration. The expression of markers for MDR, G1/S transition, epithelial–mesenchymal transition (EMT) and PI3K/ AKT/mTOR signaling pathway were examined by western blot. Results: XLOC_006753 was highly expressed in GC patients and MDR GC cell lines (SGC-7901/5-FU and SGC-7901/DDP cell lines), and its high expression was positively associated with metastasis, TNM stage, tumor size, and poor survival in GC patients. Moreover, XLOC_006753 was an independent prognostic biomarker of overall survival and progression-free survival for gastric cancer patients. Knocking down XLOC_006753 in the two MDR GC cell lines significantly inhibited cell proliferation, cell viability, cell cycle G1/S transition, and migration. XLOC_006753 knockdown also promoted apoptosis. Furthermore, western blots showed that XLOC_006753 knockdown decreased some markers of MDR, G1/S transition, and EMT expression, while increasing caspase9 expression and inhibiting the PI3K/AKT/mTOR signaling pathway in SGC-7901/5-FU and SGC-7901/DDP cells. Conclusion: High expression of XLOC_006753 promoted the development of MDR, which was activated by the PI3K/AKT/mTOR pathway in GC cells.


Marine Drugs ◽  
2018 ◽  
Vol 16 (9) ◽  
pp. 325 ◽  
Author(s):  
Xiaojuan Li ◽  
Yunping Tang ◽  
Fangmiao Yu ◽  
Yu Sun ◽  
Fangfang Huang ◽  
...  

We investigated the antitumor mechanism of Anthopleura anjunae oligopeptide (AAP-H, YVPGP) in prostate cancer DU-145 cells in vitro and in vivo. Results indicated that AAP-H was nontoxic and exhibited antitumor activities. Cell cycle analysis indicated that AAP-H may arrest DU-145 cells in the S phase. The role of the phosphatidylinositol 3-kinase/protein kinase B/mammalian rapamycin target protein (PI3K/AKT/mTOR) signaling pathway in the antitumor mechanism of APP-H was investigated. Results showed that AAP-H treatment led to dose-dependent reduction in the levels of p-AKT (Ser473), p-PI3K (p85), and p-mTOR (Ser2448), whereas t-AKT and t-PI3K levels remained unaltered compared to the untreated DU-145 cells. Inhibition of PI3K/AKT/mTOR signaling pathway in the DU-145 cells by employing inhibitor LY294002 (10 μM) or rapamycin (20 nM) effectively attenuated AAP-H-induced phosphorylation of AKT and mTOR. At the same time, inhibitor addition further elevated AAP-H-induced cleaved-caspase-3 levels. Furthermore, the effect of AAP-H on tumor growth and the role of the PI3K/AKT/mTOR signaling pathway in nude mouse model were also investigated. Immunohistochemical analysis showed that activated AKT, PI3K, and mTOR levels were reduced in DU-145 xenografts. Western blotting showed that AAP-H treatment resulted in dose-dependent reduction in p-AKT (Ser473), p-PI3K (p85), and p-mTOR (Ser2448) levels, whereas t-AKT and t-PI3K levels remained unaltered. Similarly, Bcl-xL levels decreased, whereas that of Bax increased after AAP-H treatment. AAP-H also increased initiator (caspase 8 and 9) and executor caspase (caspase 3 and 7) levels. Therefore, the antitumor mechanism of APP-H on DU-145 cells may involve regulation of the PI3K/AKT/mTOR signaling pathway, which eventually promotes apoptosis via mitochondrial and death receptor pathways. Thus, the hydrophobic oligopeptide (YVPGP) can be developed as an adjuvant for the prevention or treatment of prostate cancer in the future.


2020 ◽  
Vol 48 (8) ◽  
pp. 030006052094616 ◽  
Author(s):  
Xiaofei Li ◽  
Ruifang Tian ◽  
Lan Liu ◽  
Lihui Wang ◽  
Dong He ◽  
...  

Objective Radiotherapy plays an important role in the treatment of colorectal cancer (CRC). However, some patients benefit minimally from radiotherapy because of radioresistance. This study investigated the effects of andrographolide on radiosensitivity in HCT116 CRC cells and examined its mechanism of action. Methods Cell survival, proliferation, apoptosis, and migration were evaluated using MTT, colony formation, flow cytometry, and Transwell cell invasion assays, respectively. Glycolysis-related indicators were measured to examine cell glycolytic activity. The expression of related proteins was detected by western blotting. Results After andrographolide treatment, the expression of phosphoinositide 3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) signaling pathway-related proteins, glycolytic activity, and cell survival and invasion rates were decreased in HCT116 cells. Andrographolide plus irradiation increased apoptosis and decreased survival, invasion, and colony formation compared with the effects of irradiation alone. Conclusion Andrographolide enhanced radiosensitivity by downregulating glycolysis via inhibition of the PI3K-Akt-mTOR signaling pathway in HCT116 cells.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Mariia Lunova ◽  
Andrey Prokhorov ◽  
Milan Jirsa ◽  
Martin Hof ◽  
Agnieszka Olżyńska ◽  
...  

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1423-1423
Author(s):  
You Hua Yu ◽  
Na Guo ◽  
Yujing Gong ◽  
Baidong Liu ◽  
Hong Liu ◽  
...  

Abstract Abstract 1423 Patients with B cell malignaces initially respond to current treatment modalities, however, such malignances remain incurable. Many new therapeutic options have become available during the past several years but nearly all patients develop resistance to currently available therapeutic options. Ideally, a new treatment should inhibit tumor growth, improve the efficacy of other anti-tumor agents, and improve both the overal survial and the quality of life for patients. Pterostilbene is predominantly found in Rhubarb. We synthesized bipterostilbene (5-(4-(4-(3,5-dihydroxylstyryl)phenoxy)styryl)-benzene-1,3-diol) (C28H22O5) of a molecular weight of 438.48 Kda. In this study, we first examined whether bipterostilbene affects tumor cells proliferation using breast cancer, ovarian cancer, lymphoma and multiple myeloma (MM) cell lines. The results of the MTS assay demonstrated that bipterostilbene significantly inhibited tumor cell proliferation of the lymphoma cell line (Raji) and the MM cell lines (RPMI1640 and MM1s) at 48 hours (IC50: 5μM for Raji, 4μM for RPMI8226, and 2 μM for MM1s). The induction of tumor cell apoptosis was most prominent at 72 hours. The extent of the inhibition of tumor cell proliferation and the induction of apoptosis was concentration-dependent. Bipterostilbene had minimal effects on breast and ovarian cancer cell lines. Noteworthy, bipterostilbene had no detectable cytotoxic effects on normal human peripheral blood mononuclear cells (PBMCs). The molecular mechanism by which bipterostilbene mediates its effects was examined. Both the AKT and the NF-κB signaling transduction pathways have been reported to play key roles in B cell metabolism, proliferation and survival. Using RT-PCR, bipterostilbene specifically inhibited AKT1 and mTOR gene expression when Raji or RPMI8226 tumor cells were treated with the IC50 concentration of bipterostilbene for 24 hours. Analysis of downstream gene products of the AKT pathway revealed that Cyclin D1 expression was slightly reduced and P21Cip and P27 kip expressions were not changed. Bipterostilbene did not alter AKT2 or AKT3 gene expression, demonstrating that this compound is specifically targeting AKT1. We further determined whether bipterostilbene interfered with IGF1-induced AKT/mTOR activation or IL-1β –mediated NF-κB phosphorylation by Western blot. The results showed that bipterostilbene markedly inhibited IGF1-induced phosphorylation of AKT but did not interfere with IL-1β-induced NF-κB activity and IκB phosphorylation. Overall, the results of our in vitro studies demonstrate that bipterostilbene inhibits tumor cell proliferation and enhances apoptosis of B-cell malignancies via inhibition of the AKT/mTOR signaling pathway with no detectable effect on the NF-κB signaling pathway. Importantly, bipterostilbene is not cytotoxic on normal hematopoietic cells at concentrations that were highly toxic to B-cell malignancies. We propose that bipterostilbene may be better tolerated than other anti- cancer drugs that are currently being used for the treatment of B-cell malignancies. Disclosures: No relevant conflicts of interest to declare.


2006 ◽  
Vol 100 (4-5) ◽  
pp. 107-116 ◽  
Author(s):  
James O’Kelly ◽  
Milan Uskokovic ◽  
Nathan Lemp ◽  
Jay Vadgama ◽  
H. Phillip Koeffler

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Fengqin Wang ◽  
Hanzhong Zhang ◽  
Zhigang Cheng

EPHA2 is a member of the ephrin receptor tyrosine kinase family and is closely related to the malignant tumor progression. The effect of EPHA2 on OSCC is not clear. This study explored the role of EPHA2 and AKT/mTOR signaling pathways in Cal-27 cell invasion and migration. The expression of EPHA2 and EPHA4 in human OSCC and normal oral tissue was detected by immunohistochemistry. EPHA2-overexpressing and EPHA2-knockdown Cal-27 cells were established, and the cells were treated with an AKT inhibitor (MK2206) and mTOR inhibitor (RAD001). The expression of EPHA2 was detected by qRT-PCR, cell proliferation was evaluated by MTT assay, cell migration and invasion were examined by scratch and Transwell assay, and cell morphology and apoptosis were assessed by Hoechst 33258 staining. Western blot was performed to detect the expression of proteins related to AKT/mTOR signaling, cell cycle, and pseudopod invasion. EPHA2 and EPHA4 were highly expressed in clinical human OSCC. Overexpression of EPHA2 promoted the proliferation, migration, and invasion of Cal-27 cells, inhibited cell cycle blockage and apoptosis, and enhanced the activity of the AKT/mTOR signaling pathway. MK2206 (AKT inhibitor) and RAD001 (mTOR inhibitor) reversed the effect of EPHA2 overexpression on the biological behavior of Cal-27 cells. EPHA2 promotes the invasion and migration of Cal-27 human OSCC cells by enhancing the AKT/mTOR signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document