FLVCR, a Heme Exporter, Is Required for Peripheral T Cell Survival.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2162-2162
Author(s):  
Mary Philip ◽  
Scott A. Funkhouser ◽  
Jeff J. Delrow ◽  
Edison Y. Chiu ◽  
Janis L Abkowitz

Abstract Abstract 2162 Heme is essential for every mammalian cell, however, free heme can induce free radical formation and cellular damage, therefore cells must carefully regulate heme levels. The feline leukemia virus subgroup C receptor (FLVCR) exports heme from cells. Conditional deletion of Flvcr was shown to cause progressive anemia in neonatal and adult mice (Science 319:825–8, 2008). Using a transplant model, we previously demonstrated that Flvcr-deleted thymocytes were blocked at the CD4+CD8+ double-positive (DP) stage (Blood [ASH Annual Meeting Abstracts] 114: 913, 2009). To characterize the temporal requirement for FLVCR in developing thymocytes, we crossed Flvcrflox/flox mice to thymocyte-specific cre recombinase strains: Lck-cre mice, which express cre in early CD4+CD8+ double-negative (DN) thymocytes, and CD4-cre mice, which turn on cre in late DN/early DP thymocytes. Flvcrflox/flox;Lck-cre mice had similar numbers of DN and DP thymocytes compared to controls, however, CD4+ and CD8+ single-positive (SP) thymocytes and peripheral T cells were nearly absent, similar to what we observed in our previous transplant model. In contrast, Flvcrflox/flox;CD4-cre mice had intact thymic development with normal numbers of SP, but there were few CD4+ and CD8+ T cells in the periphery. When we analyzed deletion efficiency of these T cells, CD8+ T cells showed only 50% Flvcr deletion and were nearly all CD44-high, implying that only incompletely-deleted CD8+ T cells survived and expanded. Taken together, these results show that FLVCR is required not only for T cell development beyond the DP stage, but also for the survival of mature T cells in the periphery. We next adoptively transferred thymocytes from Flvcrflox/flox;CD4-cre mice or controls into sub-lethally irradiated Rag1−/− mice. Normal SP thymocytes undergo homeostatic proliferation when transferred into an “empty” host. At day 12 and 20 post-adoptive transfer, few Flvcrflox/flox;CD4-cre CD4+ or CD8+ T cells were found, in contrast to mice that had received Flvcr+/flox;CD4-cre thymocytes. To determine whether Flvcr-deleted T cells failed to undergo homeostatic proliferation, we used carboxyfluorescein succinimidyl ester (CFSE) to label Flvcrflox/flox;CD4-cre or control thymocytes prior to adoptive transfer. At day 8, similar numbers of Flvcrflox/flox;CD4-cre and control T cell were found in the periphery and both had diluted CFSE equally, thus initial proliferation was not affected. However, by day 20, few Flvcr-deleted T cells were present compared to controls. Experiments are currently underway to understand how and why Flvcr-deleted T cells fail to persist long-term. The finding that FLVCR is required for T cell development and peripheral survival is intriguing because there is no known specific role for heme in T cell development or function. We carried out transcriptional profiling on sorted DP thymocytes from Rag1−/− mice transplanted with Flvcr-deleted or control bone marrow to determine whether FLVCR loss led to gene expression changes that might explain the block in T cell development. Surprisingly, there were few transcriptional changes, suggesting that FLVCR loss has an abrupt impact on T cell development late in the DP stage. This finding, together with the apparent normal development of Flvcr-deleted B lymphocytes and myeloid lineages, leads us to hypothesize that FLVCR plays a specific role in T cell development starting at the DP stage and persisting throughout T cell life. FLVCR is a member of the major facilitator superfamily of secondary active transporters. While FLVCR has been shown to export heme, it is not known whether it can import or export other small molecules or metabolites. We are now using a bioinformatics approach on published datasets to analyze metabolic gene expression during normal thymic development and in various mature T cell subsets to identify metabolic pathways that are specific for the DP-SP transition in thymocytes as well as in mature, peripheral T cells. We will then test whether these pathways are altered in Flvcr-deleted thymocytes and mature T cells. These studies may uncover a new role for heme in T cell metabolism, function, and survival, or a new non-heme role for FLVCR. Disclosures: No relevant conflicts of interest to declare.

2009 ◽  
Vol 30 (3) ◽  
pp. 590-600 ◽  
Author(s):  
Wen Qing Li ◽  
Tad Guszczynski ◽  
Julie A. Hixon ◽  
Scott K. Durum

ABSTRACT Interleukin-7 (IL-7) is critical for T-cell development and peripheral T-cell homeostasis. The survival of pro-T cells and mature T cells requires IL-7. The survival function of IL-7 is accomplished partly through induction of the antiapoptotic protein Bcl-2 and inhibition of proapoptotic proteins Bax and Bad. We show here that the proapoptotic protein Bim, a BH3-only protein belonging to the Bcl-2 family, also plays a role in peripheral T-cell survival. Deletion of Bim partially protected an IL-7-dependent T-cell line and peripheral T cells, especially cells with an effector memory phenotype, from IL-7 deprivation. However, T-cell development in the thymus was not restored in IL-7−/− Rag2−/− mice reconstituted with Bim−/− bone marrow. IL-7 withdrawal altered neither the intracellular location of Bim, which was constitutively mitochondrial, nor its association with Bcl-2; however, a reduction in its association with the prosurvival protein Mcl-1 was observed. IL-7 withdrawal did not increase Bim mRNA or protein expression but did induce changes in the isoelectric point of BimEL and its reactivity with an antiphosphoserine antibody. Our findings suggest that the maintenance of peripheral T cells by IL-7 occurs partly through inhibition of Bim activity at the posttranslational level.


2006 ◽  
Vol 26 (3) ◽  
pp. 789-809 ◽  
Author(s):  
Lawryn H. Kasper ◽  
Tomofusa Fukuyama ◽  
Michelle A. Biesen ◽  
Fayçal Boussouar ◽  
Caili Tong ◽  
...  

ABSTRACT The global transcriptional coactivators CREB-binding protein (CBP) and the closely related p300 interact with over 312 proteins, making them among the most heavily connected hubs in the known mammalian protein-protein interactome. It is largely uncertain, however, if these interactions are important in specific cell lineages of adult animals, as homozygous null mutations in either CBP or p300 result in early embryonic lethality in mice. Here we describe a Cre/LoxP conditional p300 null allele (p300 flox ) that allows for the temporal and tissue-specific inactivation of p300. We used mice carrying p300 flox and a CBP conditional knockout allele (CBP flox ) in conjunction with an Lck-Cre transgene to delete CBP and p300 starting at the CD4− CD8− double-negative thymocyte stage of T-cell development. Loss of either p300 or CBP led to a decrease in CD4+ CD8+ double-positive thymocytes, but an increase in the percentage of CD8+ single-positive thymocytes seen in CBP mutant mice was not observed in p300 mutants. T cells completely lacking both CBP and p300 did not develop normally and were nonexistent or very rare in the periphery, however. T cells lacking CBP or p300 had reduced tumor necrosis factor alpha gene expression in response to phorbol ester and ionophore, while signal-responsive gene expression in CBP- or p300-deficient macrophages was largely intact. Thus, CBP and p300 each supply a surprising degree of redundant coactivation capacity in T cells and macrophages, although each gene has also unique properties in thymocyte development.


Blood ◽  
2002 ◽  
Vol 99 (5) ◽  
pp. 1620-1626 ◽  
Author(s):  
Tessa C. C. Kerre ◽  
Greet De Smet ◽  
Magda De Smedt ◽  
Alfred Zippelius ◽  
Mikaël J. Pittet ◽  
...  

The NOD-LtSZ scid/scid (NOD/SCID) repopulation assay is the criterion for the study of self-renewal and multilineage differentiation of human hematopoietic stem cells. An important shortcoming of this model is the reported absence of T-cell development. We studied this aspect of the model and investigated how it could be optimized to support T-cell development. Occasionally, low-grade thymic engraftment was observed in NOD/SCID mice or Rag2−/−γc−/− mice. In contrast, the treatment of NOD/SCID mice with a monoclonal antibody against the murine interleukin-2Rβ, (IL-2Rβ) known to decrease natural killer cell activity, resulted in human thymopoiesis in up to 60% of the mice. T-cell development was phenotypically normal and resulted in polyclonal, mature, and functional CD1−TCRαβ+ CD4+ or CD8+single-positive T cells. In mice with ongoing thymopoiesis, peripheral T cells were observed. TREC analysis showed that T cells with a naive phenotype (CD45RA+) emerged from the thymus. In approximately half of these mice, the peripheral T cells included a pauciclonal outgrowth of CD45RO+ cells. These data suggest that all elements of a functional immune system were present in these animals.


2018 ◽  
Vol 215 (9) ◽  
pp. 2429-2443 ◽  
Author(s):  
Mark D. Singh ◽  
Minjian Ni ◽  
Jenna M. Sullivan ◽  
Jessica A. Hamerman ◽  
Daniel J. Campbell

CD8+ T cells respond to signals via the T cell receptor (TCR), costimulatory molecules, and immunoregulatory cytokines by developing into diverse populations of effector and memory cells. The relative strength of phosphoinositide 3-kinase (PI3K) signaling early in the T cell response can dramatically influence downstream effector and memory T cell differentiation. We show that initial PI3K signaling during T cell activation results in up-regulation of the signaling scaffold B cell adaptor for PI3K (BCAP), which further potentiates PI3K signaling and promotes the accumulation of CD8+ T cells with a terminally differentiated effector phenotype. Accordingly, BCAP-deficient CD8+ T cells have attenuated clonal expansion and altered effector and memory T cell development following infection with Listeria monocytogenes. Thus, induction of BCAP serves as a positive feedback circuit to enhance PI3K signaling in activated CD8+ T cells, thereby acting as a molecular checkpoint regulating effector and memory T cell development.


2001 ◽  
Vol 21 (2) ◽  
pp. 678-689 ◽  
Author(s):  
Renren Wen ◽  
Demin Wang ◽  
Catriona McKay ◽  
Kevin D. Bunting ◽  
Jean-Christophe Marine ◽  
...  

ABSTRACT Jak3-deficient mice display vastly reduced numbers of lymphoid cells. Thymocytes and peripheral T cells from Jak3-deficient mice have a high apoptotic index, suggesting that Jak3 provides survival signals. Here we report that Jak3 regulates T lymphopoiesis at least in part through its selective regulation of Bax and Bcl-2. Jak3-deficient thymocytes express elevated levels of Bax and reduced levels of Bcl-2 relative to those in wild-type littermates. Notably, up-regulation of Bax in Jak3-deficient T cells is physiologically relevant, as Jak3 Bax double-null mice have marked increases in thymocyte and peripheral T-cell numbers. Rescue of T lymphopoiesis by Bax loss was selective, as mice deficient in Jak3 plus p53 or in Jak3 plus Fas remained lymphopenic. However, Bax loss failed to restore proper ratios of peripheral CD4/CD8 T cells, which are abnormally high in Jak3-null mice. Transplantation into Jak3-deficient mice of Jak3-null bone marrow transduced with a Bcl-2-expressing retrovirus also improved peripheral T-cell numbers and restored the ratio of peripheral CD4/CD8 T cells to wild-type levels. The data support the concepts that Jak kinases regulate cell survival through their selective and cell context-dependent regulation of pro- and antiapoptotic Bcl-2 family proteins and that Bax and Bcl-2 play distinct roles in T-cell development.


Cell Reports ◽  
2020 ◽  
Vol 30 (5) ◽  
pp. 1504-1514.e7 ◽  
Author(s):  
Veronika Horkova ◽  
Ales Drobek ◽  
Daniel Mueller ◽  
Celine Gubser ◽  
Veronika Niederlova ◽  
...  

2020 ◽  
Vol 6 (31) ◽  
pp. eaaw7313 ◽  
Author(s):  
Laura Garcia-Perez ◽  
Farbod Famili ◽  
Martijn Cordes ◽  
Martijn Brugman ◽  
Marja van Eggermond ◽  
...  

T cell factor 1 (Tcf1) is the first T cell–specific protein induced by Notch signaling in the thymus, leading to the activation of two major target genes, Gata3 and Bcl11b. Tcf1 deficiency results in partial arrests in T cell development, high apoptosis, and increased development of B and myeloid cells. Phenotypically, seemingly fully T cell–committed thymocytes with Tcf1 deficiency have promiscuous gene expression and an altered epigenetic profile and can dedifferentiate into more immature thymocytes and non-T cells. Restoring Bcl11b expression in Tcf1-deficient cells rescues T cell development but does not strongly suppress the development of non-T cells; in contrast, expressing Gata3 suppresses their development but does not rescue T cell development. Thus, T cell development is controlled by a minimal transcription factor network involving Notch signaling, Tcf1, and the subsequent division of labor between Bcl11b and Gata3, thereby ensuring a properly regulated T cell gene expression program.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3712-3712
Author(s):  
Christian Reimann ◽  
Andrea Schiavo ◽  
Julien Rouiller ◽  
Elodie Vidal ◽  
Kheira Beldjord ◽  
...  

Abstract Abstract 3712 Injection of donor derived T-cellular precursors has been proposed as a novel strategy to shorten delayed reconstitution of the T-lymphoid compartment following HSCT. In the past years, several research groups have successfully generated murine and human T-cellular precursors in vitro using Notchligand-based coculture systems such as OP9-DL1 or Tst-DL4. Murine T-cellular precursors generated in vitro, promoted reconstitution of the T-cellular compartment when applied in murine HSCT-models. In consistency, transfer of human T-cellular precursors, generated in vitro in coculture with OP9-DL1 or Tst-DL4 resulted in enhanced thymic repopulation in NOD/SCID/gc−/− mice. Yet, positive effects on peripheral T-cell reconstitution have not been reported. Moreover, clinical application of OP9-DL1 or Tst-DL4 coculture systems is limited, since they consist of murine stromal cells transduced with either DL1 or DL4. It has been described that exposure of CD34+ cells to immobilized DL4 induces T-cell differentiation in vitro and allows expansion human T-cellular precursors even in absence of stromal cell support. However, the hypothesis that DL4 alone can drive hematopoietic progenitors towards a T-cell fate in vitro, requires more evidence. Here, we further characterized the in vitro and in vivo potential of T-cellular precursors generated by single exposure to DL4. We exposed human CD34+ progenitors to immobilized DL4 in the presence of different cytokine combinations implicated in human haematopoiesis. Within 7 days, CD34+CD7+ and CD34−CD7++ T-cellular precursors emerged in the presence of DL4, but not under control conditions. After 7 days the CD34+CD7+ population subsequently declined while the CD34−CD7++ population further expanded. Two distinct progenitor subsets, CD5+ and CD5-, emerged within the CD34−CD7++ population. The CD34−CD7++CD5+ subset partially acquired CD1a, corresponding to a developmental stage between the early thymic progenitor (ETP) and the prethymocyte (pre-T) stage. Conversely to what observed in the OP9-DL1 system, T-cell development did not progress beyond the pre-T-stage. Indeed, we neither observed more advanced stages of T-cell development, such as immature single positive CD4+ cells, nor complete TCR-rearrangements. 7-day exposure to immobilized DL4 induced a 90-fold increase of T-precursor frequency in CD34+ progenitors (1/8800 before culture vs. 1/90 after culture) as confirmed by limiting dilution assays on OP9-DL1. All T-cellular precursor activity was restricted to cells expressing CD34, CD7 or both (frequency: 1/9). In particular, elevated T-cellular precursor levels were found in the subsets expressing CD7 (CD34+/CD7+ and CD34−/CD7+), while the T-cellular precursor frequency in the CD34+/CD7− subset was equal to that seen in non-cultured CD34+ progenitors. In consistency the CD34−CD7− population did not contain any detectable T-cellular precursors. After 7 day exposure to DL4, cells phenotypically corresponding to T-cellular precursors were transferred into NOD/SCID/gc−/− mice. Within 2 months following HSCT, cells exposed to DL4 were able to reconstitute the recipients' thymus and partially gave rise to peripheral T-cells. When injecting non-cultured CD34+ progenitors, thymic reconstitution was likewise seen 2 months after HSCT. However, intrathymic T-cell development was less advanced and peripheral T-cells were absent. In contrast, cells cultured in presence of a control peptide did not retain any potential to repopulate the recipients' thymus. Our experiments provide further evidence that exposure DL4 induces early human T-cell development and allows generation of large numbers of T-cellular precursors in vitro. These precursors feature phenotypical and molecular properties corresponding to early precursors found in the human thymus. Furthermore, they have an increased potential to further differentiate into mature T-cells in vitro and when transferred into immunodeficient mice. Our preliminary data suggest, that injection of T-cellular precursors accelerates T-cell reconstitution after HSCT and provides further evidence for the feasibility of this novel strategy of immunotherapy. Disclosures: No relevant conflicts of interest to declare.


1993 ◽  
Vol 178 (1) ◽  
pp. 231-236 ◽  
Author(s):  
W J Murphy ◽  
S K Durum ◽  
D L Longo

DW/J dwarf mice have a defect in their anterior pituitary and are deficient in growth hormone (GH) and prolactin (PRL). These mice have been demonstrated previously to have a deficiency in CD4/CD8 double-positive thymocytes, which could be corrected by treatment of these mice with recombinant human GH. Since PRL has been implicated in T cell function and human GH can interact with the PRL receptor, DW/J dwarf mice were treated with either ovine GH (ovGH) (20 micrograms/d) or ovine PRL (ovPRL) (20 micrograms/d). The ovine hormones can only bind their own specific receptors in the mouse. After several weeks of treatment, it was found that these two hormones produced markedly contrasting effects on T cells. Phenotypic analysis of the lymphoid organs was performed by flow cytometry and the functional capability of the peripheral T cells was assessed by immunizing the mice and determining the extent of antigen-specific proliferation of T cells obtained from the draining lymph nodes or by determining splenic mitogen responses. The results indicated that ovGH administration to dwarf mice resulted in significant increases in thymic cellularity yet had little effect on peripheral T cell responses. In contrast, the administration of ovPRL resulted in a further decrease in thymic cellularity when compared with untreated dwarf mice. No thymic effects of either ovGH or ovPRL administration were detected on the normal +/? counterparts. However, ovPRL administration resulted in a significant increase in the number and function of antigen-specific peripheral T cells in both immunized dwarf and +/? mice. The adjuvant effects of PRL occurred even though the mice also received complete Freund's adjuvant. These results suggest that neuroendocrine hormones may act in concert in T cell development. GH appears to promote thymocyte proliferation, while PRL appears to decrease thymus size and yet augment the number and function of antigen-specific T cells in the periphery.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Meriam Nefla ◽  
Nicola J. Darling ◽  
Manuel van Gijsel Bonnello ◽  
Philip Cohen ◽  
J. Simon C. Arthur

AbstractSalt Inducible Kinases (SIKs), of which there are 3 isoforms, are established to play roles in innate immunity, metabolic control and neuronal function, but their role in adaptive immunity is unknown. To address this gap, we used a combination of SIK knockout and kinase-inactive knock-in mice. The combined loss of SIK1 and SIK2 activity did not block T cell development. Conditional knockout of SIK3 in haemopoietic cells, driven by a Vav-iCre transgene, resulted in a moderate reduction in the numbers of peripheral T cells, but normal B cell numbers. Constitutive knockout of SIK2 combined with conditional knockout of SIK3 in the haemopoietic cells resulted in a severe reduction in peripheral T cells without reducing B cell number. A similar effect was seen when SIK3 deletion was driven via CD4-Cre transgene to delete at the DP stage of T cell development. Analysis of the SIK2/3 Vav-iCre mice showed that thymocyte number was greatly reduced, but development was not blocked completely as indicated by the presence of low numbers CD4 and CD8 single positive cells. SIK2 and SIK3 were not required for rearrangement of the TCRβ locus, or for low level cell surface expression of the TCR complex on the surface of CD4/CD8 double positive thymocytes. In the absence of both SIK2 and SIK3, progression to mature single positive cells was greatly reduced, suggesting a defect in negative and/or positive selection in the thymus. In agreement with an effect on negative selection, increased apoptosis was seen in thymic TCRbeta high/CD5 positive cells from SIK2/3 knockout mice. Together, these results show an important role for SIK2 and SIK3 in thymic T cell development.


Sign in / Sign up

Export Citation Format

Share Document