Adapted NOD/SCID model supports development of phenotypically and functionally mature T cells from human umbilical cord blood CD34+ cells

Blood ◽  
2002 ◽  
Vol 99 (5) ◽  
pp. 1620-1626 ◽  
Author(s):  
Tessa C. C. Kerre ◽  
Greet De Smet ◽  
Magda De Smedt ◽  
Alfred Zippelius ◽  
Mikaël J. Pittet ◽  
...  

The NOD-LtSZ scid/scid (NOD/SCID) repopulation assay is the criterion for the study of self-renewal and multilineage differentiation of human hematopoietic stem cells. An important shortcoming of this model is the reported absence of T-cell development. We studied this aspect of the model and investigated how it could be optimized to support T-cell development. Occasionally, low-grade thymic engraftment was observed in NOD/SCID mice or Rag2−/−γc−/− mice. In contrast, the treatment of NOD/SCID mice with a monoclonal antibody against the murine interleukin-2Rβ, (IL-2Rβ) known to decrease natural killer cell activity, resulted in human thymopoiesis in up to 60% of the mice. T-cell development was phenotypically normal and resulted in polyclonal, mature, and functional CD1−TCRαβ+ CD4+ or CD8+single-positive T cells. In mice with ongoing thymopoiesis, peripheral T cells were observed. TREC analysis showed that T cells with a naive phenotype (CD45RA+) emerged from the thymus. In approximately half of these mice, the peripheral T cells included a pauciclonal outgrowth of CD45RO+ cells. These data suggest that all elements of a functional immune system were present in these animals.

2009 ◽  
Vol 30 (3) ◽  
pp. 590-600 ◽  
Author(s):  
Wen Qing Li ◽  
Tad Guszczynski ◽  
Julie A. Hixon ◽  
Scott K. Durum

ABSTRACT Interleukin-7 (IL-7) is critical for T-cell development and peripheral T-cell homeostasis. The survival of pro-T cells and mature T cells requires IL-7. The survival function of IL-7 is accomplished partly through induction of the antiapoptotic protein Bcl-2 and inhibition of proapoptotic proteins Bax and Bad. We show here that the proapoptotic protein Bim, a BH3-only protein belonging to the Bcl-2 family, also plays a role in peripheral T-cell survival. Deletion of Bim partially protected an IL-7-dependent T-cell line and peripheral T cells, especially cells with an effector memory phenotype, from IL-7 deprivation. However, T-cell development in the thymus was not restored in IL-7−/− Rag2−/− mice reconstituted with Bim−/− bone marrow. IL-7 withdrawal altered neither the intracellular location of Bim, which was constitutively mitochondrial, nor its association with Bcl-2; however, a reduction in its association with the prosurvival protein Mcl-1 was observed. IL-7 withdrawal did not increase Bim mRNA or protein expression but did induce changes in the isoelectric point of BimEL and its reactivity with an antiphosphoserine antibody. Our findings suggest that the maintenance of peripheral T cells by IL-7 occurs partly through inhibition of Bim activity at the posttranslational level.


2001 ◽  
Vol 194 (1) ◽  
pp. 99-106 ◽  
Author(s):  
David Allman ◽  
Fredrick G. Karnell ◽  
Jennifer A. Punt ◽  
Sonia Bakkour ◽  
Lanwei Xu ◽  
...  

Notch1 signaling is required for T cell development. We have previously demonstrated that expression of a dominant active Notch1 (ICN1) transgene in hematopoietic stem cells (HSCs) leads to thymic-independent development of CD4+CD8+ double-positive (DP) T cells in the bone marrow (BM). To understand the function of Notch1 in early stages of T cell development, we assessed the ability of ICN1 to induce extrathymic T lineage commitment in BM progenitors from mice that varied in their capacity to form a functional pre-T cell receptor (TCR). Whereas mice repopulated with ICN1 transduced HSCs from either recombinase deficient (Rag-2−/−) or Src homology 2 domain–containing leukocyte protein of 76 kD (SLP-76)−/− mice failed to develop DP BM cells, recipients of ICN1-transduced Rag-2−/− progenitors contained two novel BM cell populations indicative of pre-DP T cell development. These novel BM populations are characterized by their expression of CD3ε and pre-Tα mRNA and the surface proteins CD44 and CD25. In contrast, complementation of Rag-2−/− mice with a TCRβ transgene restored ICN1-induced DP development in the BM within 3 wk after BM transfer (BMT). At later time points, this population selectively and consistently gave rise to T cell leukemia. These findings demonstrate that Notch signaling directs T lineage commitment from multipotent progenitor cells; however, both expansion and leukemic transformation of this population are dependent on T cell–specific signals associated with development of DP thymocytes.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 124-124
Author(s):  
Ivan Maillard ◽  
Laleh Talebian ◽  
Zhe Li ◽  
Yalin Guo ◽  
Daisuke Sugiyama ◽  
...  

Abstract The family of core binding factors includes the DNA-binding subunits Runx1-3 and the common non-DNA binding partner CBFβ. Runx1 and CBFβ are essential for the emergence of hematopoietic stem cells during fetal development, but not for stem cell maintenance during later ontogeny. Runx1 is also required for megakaryocyte differentiation, B cell development, and for the DN2 to DN3 transition in thymocyte development. Runx2/CBFβ are critical for normal osteogenesis, and Runx3 for CD4 silencing in CD8+ T cells, but their contribution to other steps of hematopoietic development is unknown. To examine the collective role of core binding factors in hematopoiesis, we generated a hypomorphic Cbfb allele (Cbfbrss). CBFβ protein levels were reduced by approximately 2–3 fold in fetuses homozygous for the Cbfbrss allele (Cbfbrss/rss), and 3–4 fold in fetuses carrying one hypomorphic and one knockout allele (Cbfbrss/−). Cbfbrss/rss and Cbfbrss/− fetuses had normal erythroid and B cell development, and relatively mild abnormalities in megakaryocyte and granulocyte differentiation. In contrast, T cell development was very sensitive to an incremental reduction of CBFβ levels: mature thymocytes were decreased in Cbfbrss/rss fetuses, and virtually absent in Cbfbrss/−fetuses. We next assessed the development of Cbfbrss/rss and Cbfbrss/− fetal liver progenitors after transplantation to irradiated adult recipients, in competition with wild-type (wt) bone marrow cells. Wt, Cbfbrss/rss and Cbfbrss/− fetal progenitors replenished the erythroid, myeloid and B cell compartments equally well. The overall development of Cbfbrss/rss T cells was preserved, although CD4 expression was derepressed in double negative thymocytes. In Cbfbrss/− chimeras, mature thymocytes were entirely derived from competitor cells. Furthermore, the developmental block in Cbfbrss/− progenitors was present at the earliest stages of T cell development within the DN1 (ETP) and DN2 subsets. Our data define a critical CBFβ threshold for normal T cell development, and they situate an essential role of core binding factors during the earliest stages of T cell development. In addition, early thymopoiesis appeared more severely affected by reduced CBFβ dosage than by the lack of Runx1 (Ichikawa et al., Nat Med 2004; Growney et al., Blood 2005), suggesting that Runx2/3 may contribute to core binding factor activity in the T cell lineage.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 184-184
Author(s):  
Takeshi Isoda ◽  
Masatoshi Takagi ◽  
Jinhua Piao ◽  
Shun Nakagama ◽  
Masaki Sato ◽  
...  

Abstract Abstract 184FN2 Ataxia Telangiectagia (AT) is an autosomal recessive immunodeficiency, caused by mutation of ataxia telangiectagia mutated gene (ATM). ATM plays a crucial role for responding to DNA damages by extrinsic and intrinsic factors, and is a master regulator for maintaining DNA integrity. VDJ recombination and class switch recombination during lymphocyte maturation are the steps of intrinsic DNA damage response where ATM stabilizes DNA ends during recombination. ATM deficiency (ATM−/−) is known to predispose to T-cell lymphopenia and T-lineage lymphoma development. ATM−/− mouse has been shown to have a failure of T-cell development at the stage from double positive (DP) to single positive (SP) differentiation, which is due to a failure of T-cell receptor a (TCRa) recombination. Thymic lymphomas in ATM−/− mice have recently been shown to have a chromosome 14 translocation involving TCRd locus, suggesting that the first event for translocation arises during TCRd locus recombination at double negative (DN) stage. However, phenotypic features of T-cell development at DN phase and the timing of chromosome 14 translocation formation in ATM−/− are not fully elucidated. Here we demonstrate that T cells of ATM−/− mice show a failure at the transition from DN3a to DN3b at b and gd-selection checkpoints due to multiple TCR recombination failure in-vivo. Consistent with in-vivo developmental profiles of ATM−/− mice thymocytes, long term hematopoietic stem cells (LTR-HSCs) of ATM−/− mice cultured with OP9-DLL1 show a delay at b-selection checkpoint in chronological order. In this culture system, failures in gd-T-cell development are also observed in ATM−/− LTR-HSCs. Involvement of thymic stromas in the failure of this transition was ruled out by bone-marrow transplantation (BMT) of ATM−/− donor to WT recipient mice, where thymocytes reconstitution showed the same transition failure at b-selection checkpoint. Thymocytes in RAG2−/− mice are arrested at DN3 stage by a failure of cleavage of TCR genes, but the arrested thymocytes are known to progress to DP phase by anti-CD3e antibody stimulation. This experiment enables to analyze pre-TCR dependent differentiation signal machinery. Then anti-CD3e antibody was injected into RAG2−/−ATM−/− mouse and DN3 cells were shown to be led to DP phase, indicating that ATM itself is not involved in the differentiation program during DN to DP phase. These results suggested loss of ATM attenuates T cell differentiation at DN3a to DN3b transition due to inefficient TCRg, d and b locus recombination. Thus differentiation failure from DN3a to DN3b in ATM deficiency is presumably the primary cause of T cell lymphopenia at the stage prior to positive-selection. We next investigated when of the differentiation stages chromosome 14 translocation involving TCRa/d locus monitored. When the LTR-HSCs is cultured on the OP9-DLL1 cells with high-dose cytokine including 10 ng/ml of Flt3-L, IL-7 and SCF, differentiation of LTR-HSCs to T cells halt at DN2-3a phase before b-selection. Then, by reducing the Flt3-L and IL7 to 5 ng/ml and 1 ng/ml, respectively, the differentiation arrest is released and Tcell differentiation progresses from DN3a to DN3b. No detectable chromosome break at TCRad locus was observed at DN2-3a in wild type, while 5% of ATM−/− cells carried TCRad break, associated with chromosome 14 translocation in approximately 0.8 % of DN2-3a cells. After progression to DN3b-4 phase, TCRad locus break was still observed in AT cells at the frequency of 1%, and chromosome 14 translocations involving TCRad locus was observed in 12% of ATM−/− cells, which was in contrast to none in wild type cell. Mono- or bi-allelic TCRa/d breaks, chromosome 14 dicentric, and t (12:14) were also observed in minor population of ATM−/− cells. These results suggest that critical point for generation of chromosome 14 translocations involving TCRa/d locus lies at DN2-3a to 3b stages corresponding during b and gd selection checkpoint in ATM deficient thymocytes. Our findings revealed that developmental failure of T-cells in AT arises during b and gd–selection checkpoint, which leads to the breaks of TCRa/d locus and subsequent chromosome 14 translocation formation. Thus we propose T-lymphopenia and predisposition to T cell leukemia/lymphoma are tightly connected in ATM deficient condition. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
John M. Edgar ◽  
Peter W. Zandstra

ABSTRACTT-cell development from hematopoietic stem and progenitor cells (HSPCs) is tightly regulated through Notch pathway activation by the Notch ligands Delta-like (DL) 1 and 4 and Jagged-2. Other molecules, such as stem cell factor (SCF), FMS-like tyrosine kinase 3 ligand (Flt3L) and interleukin (IL)-7, play a supportive role in regulating the survival, differentiation, and proliferation of developing progenitor (pro)T-cells. Numerous other signaling molecules are known to instruct T-lineage development in vivo, but little work has been done to optimize their use for T-cell production in vitro. Using a defined T-lineage differentiation assay consisting of plates coated with the Notch ligand DL4 and adhesion molecule VCAM-1, we performed a cytokine screen that identified IL-3 and tumor necrosis factor α (TNFα) as enhancers of proT-cell differentiation and expansion. Mechanistically, we found that TNFα induced T-lineage differentiation through the positive regulation of T-lineage genes GATA3, TCF7, and BCL11b. TNFα also synergized with IL-3 to induce proliferation by upregulating the expression of the IL-3 receptor on CD34+ HSPCs, yielding 753.2 (532.4-1026.9; 5-95 percentile)-fold expansion of total cells after 14 days compared to 8.9 (4.3-21.5)-fold expansion in conditions without IL-3 and TNFα. We then optimized cytokine concentrations for T-cell maturation. Focusing on T-cell maturation, we used quantitative models to optimize dynamically changing cytokine requirements and used these to construct a three-stage assay for generating CD3+CD4+CD8+ and CD3+CD4−CD8+ T-cells. Our work provides new insight into T-cell development and a robust in vitro assay for generating T-cells to enable clinical therapies for treating cancer and immune disorders.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2162-2162
Author(s):  
Mary Philip ◽  
Scott A. Funkhouser ◽  
Jeff J. Delrow ◽  
Edison Y. Chiu ◽  
Janis L Abkowitz

Abstract Abstract 2162 Heme is essential for every mammalian cell, however, free heme can induce free radical formation and cellular damage, therefore cells must carefully regulate heme levels. The feline leukemia virus subgroup C receptor (FLVCR) exports heme from cells. Conditional deletion of Flvcr was shown to cause progressive anemia in neonatal and adult mice (Science 319:825–8, 2008). Using a transplant model, we previously demonstrated that Flvcr-deleted thymocytes were blocked at the CD4+CD8+ double-positive (DP) stage (Blood [ASH Annual Meeting Abstracts] 114: 913, 2009). To characterize the temporal requirement for FLVCR in developing thymocytes, we crossed Flvcrflox/flox mice to thymocyte-specific cre recombinase strains: Lck-cre mice, which express cre in early CD4+CD8+ double-negative (DN) thymocytes, and CD4-cre mice, which turn on cre in late DN/early DP thymocytes. Flvcrflox/flox;Lck-cre mice had similar numbers of DN and DP thymocytes compared to controls, however, CD4+ and CD8+ single-positive (SP) thymocytes and peripheral T cells were nearly absent, similar to what we observed in our previous transplant model. In contrast, Flvcrflox/flox;CD4-cre mice had intact thymic development with normal numbers of SP, but there were few CD4+ and CD8+ T cells in the periphery. When we analyzed deletion efficiency of these T cells, CD8+ T cells showed only 50% Flvcr deletion and were nearly all CD44-high, implying that only incompletely-deleted CD8+ T cells survived and expanded. Taken together, these results show that FLVCR is required not only for T cell development beyond the DP stage, but also for the survival of mature T cells in the periphery. We next adoptively transferred thymocytes from Flvcrflox/flox;CD4-cre mice or controls into sub-lethally irradiated Rag1−/− mice. Normal SP thymocytes undergo homeostatic proliferation when transferred into an “empty” host. At day 12 and 20 post-adoptive transfer, few Flvcrflox/flox;CD4-cre CD4+ or CD8+ T cells were found, in contrast to mice that had received Flvcr+/flox;CD4-cre thymocytes. To determine whether Flvcr-deleted T cells failed to undergo homeostatic proliferation, we used carboxyfluorescein succinimidyl ester (CFSE) to label Flvcrflox/flox;CD4-cre or control thymocytes prior to adoptive transfer. At day 8, similar numbers of Flvcrflox/flox;CD4-cre and control T cell were found in the periphery and both had diluted CFSE equally, thus initial proliferation was not affected. However, by day 20, few Flvcr-deleted T cells were present compared to controls. Experiments are currently underway to understand how and why Flvcr-deleted T cells fail to persist long-term. The finding that FLVCR is required for T cell development and peripheral survival is intriguing because there is no known specific role for heme in T cell development or function. We carried out transcriptional profiling on sorted DP thymocytes from Rag1−/− mice transplanted with Flvcr-deleted or control bone marrow to determine whether FLVCR loss led to gene expression changes that might explain the block in T cell development. Surprisingly, there were few transcriptional changes, suggesting that FLVCR loss has an abrupt impact on T cell development late in the DP stage. This finding, together with the apparent normal development of Flvcr-deleted B lymphocytes and myeloid lineages, leads us to hypothesize that FLVCR plays a specific role in T cell development starting at the DP stage and persisting throughout T cell life. FLVCR is a member of the major facilitator superfamily of secondary active transporters. While FLVCR has been shown to export heme, it is not known whether it can import or export other small molecules or metabolites. We are now using a bioinformatics approach on published datasets to analyze metabolic gene expression during normal thymic development and in various mature T cell subsets to identify metabolic pathways that are specific for the DP-SP transition in thymocytes as well as in mature, peripheral T cells. We will then test whether these pathways are altered in Flvcr-deleted thymocytes and mature T cells. These studies may uncover a new role for heme in T cell metabolism, function, and survival, or a new non-heme role for FLVCR. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (5) ◽  
pp. 972-982 ◽  
Author(s):  
Génève Awong ◽  
Elaine Herer ◽  
Charles D. Surh ◽  
John E. Dick ◽  
Ross N. La Motte-Mohs ◽  
...  

T-cell development follows a defined set of stage-specific differentiation steps. However, molecular and cellular events occurring at early stages of human T-cell development remain to be fully elucidated. To address this, human umbilical cord blood (UCB) hematopoietic stem cells (HSCs) were induced to differentiate to the T lineage in OP9-DL1 cocultures. A developmental program involving a sequential and temporally discrete expression of key differentiation markers was revealed. Quantitative clonal analyses demonstrated that CD34+CD38− and CD34+CD38lo subsets of UCB contain a similarly high T-lineage progenitor frequency, whereas the frequency in CD34+CD38+/hi cells was 5-fold lower. Delta-like/Notch-induced signals increased the T-cell progenitor frequency of CD34+CD38−/lo cells differentiated on OP9-DL1, and 2 distinct progenitor subsets, CD34+CD45RA+CD7++CD5−CD1a− (proT1) and CD34+CD45RA+CD7++CD5+CD1a− (proT2), were identified and their thymus engrafting capacity was examined, with proT2 cells showing a 3-fold enhanced reconstituting capacity compared with the proT1 subset. Furthermore, in vitro–generated CD34+CD7++ progenitors effectively engrafted the thymus of immunodeficient mice, which was enhanced by the addition of an IL-7/IL-7 antibody complex. Taken together, the identification of T-progenitor subsets readily generated in vitro may offer important avenues to improve cellular-based immune-reconstitution approaches.


Blood ◽  
2010 ◽  
Vol 116 (11) ◽  
pp. e18-e25 ◽  
Author(s):  
Il-Kang Na ◽  
John C. Markley ◽  
Jennifer J. Tsai ◽  
Nury L. Yim ◽  
Bradley J. Beattie ◽  
...  

Abstract We have developed a dual bioluminescent reporter system allowing noninvasive, concomitant imaging of T-cell trafficking, expansion, and activation of nuclear factor of activated T cells (NFAT) in vivo. NFAT activation plays an important role in T-cell activation and T-cell development. Therefore we used this system to determine spatial-temporal activation patterns of (1) proliferating T lymphocytes during graft-versus-host disease (GVHD) and (2) T-cell precursors during T-cell development after allogeneic hematopoietic stem cell transplantation (HSCT). In the first days after HSCT, donor T cells migrated to the peripheral lymph nodes and the intestines, whereas the NFAT activation was dominant in the intestines, suggesting an important role for the intestines in the early stages of alloactivation during development of GVHD. After adoptive transfer of in vitro-derived T-cell receptor (TCR) H-Y transgenic T-cell precursors into B6 (H-2b) hosts of both sexes, NFAT signaling and development into CD4+ or CD8+ single-positive cells could only be detected in the thymus of female recipients indicating either absence of positive selection or prompt depletion of double-positive thymocytes in the male recipients. Because NFAT plays an important role in a wide range of cell types, our system could provide new insights into a variety of biologic processes.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3304-3304
Author(s):  
Fukun Guo ◽  
David Hildeman ◽  
David A. Williams ◽  
Yi Zheng

Abstract The Rac subfamily GTPases of the Rho family have been implicated in the control of actin dynamics, cell proliferation, apoptosis, adhesion and migration of many blood cell types including hematopoietic stem/progenitors, neutrophils and macrophages, but their role in T cell development remains poorly understood. T cells from the Rac2 deficient mice appear to mostly undergo normal development, whereas previous constitutively active mutant Rac2 or Rac1 overexpression studies suggest Rac GTPases are required for CD4+ and CD8+ T cell maturation. Using conditional gene targeting, we have achieved specific deletion of Rac1 or Rac1 together with Rac2 in the T cell lineage by cross-breeding the Lck-Cre transgenic mice with the Rac1flox/flox mice that contain a pair of loxP sites sandwiching the exon 1 sequences of Rac1 or the Rac1flox/flox;Rac2−/− mice. We show that similar to Rac2 deficiency, inactivation of Rac1 alone had little effect on various developmental stages of T cells in the animal. However, deletion of both Rac1 and Rac2 significantly affected both the immature CD4−CD8− (2.3 fold increase) and CD4+CD8+ (13% decrease) populations in the mouse thymus and the mature CD4+ and CD8+ populations in the thymus and spleen (Table). These developmental defects are associated with proliferation defects of thymocytes and splenocytes in response to ConA or PMA/ionomycin stimulation and deficient survival of various T cell populations at different developmental stages (Table). Together, these data show that Rac1 and Rac2 play overlapping and obligatory roles in T-cell development and serve as important cell survival regulators at various stages. Table. Frequency and apoptosis rate of different T-cell subsets in thymocytes and splenocytes T cell subsets WT (n=10) Rac1−/− (n=6) Rac1−/−Rac2−/−(n=6) Total thymocyte number (×106) 101.3±30.0 98.0±25.0 44.7±25.5 CD4−CD8− thymocyte frequency (%) 5.5±1.9 4.5±0.7 12.7±4.3 apoptosis rate (%) 20.1±2.2 15.0±1.3 CD4+CD8+ thymocyte frequency (%) 76.2±3.2 77.3±4.1 66.2±5.4 apoptosis rate (%) 18.8±4.3 27.9±2.8 CD4+ thymocyte frequency (%) 14.5±3.4 14.4±2.4 7.9±2.3 apoptosis rate (%) 13.3±2.3 21.5±4.5 CD8+ thymocyte frequency (%) 3.9±1.2 3.8±1.0 13.2±2.2 apoptosis rate (%) 12.5±2.2 8.8±1.1 Total splenocyte number (×106) 60.4±21.8 62.0±13.0 51.1±28.9 CD4+TCRβ+ splenocyte frequency (%) 9.7±2.2 8.0±2.3 3.2±1.1 apoptosis rate (%) 15.1±3.1 27.5±6.9 CD8+TCRβ+ splenocyte frequency (%) 3.2±0.8 2.4±0.9 0.6±0.4 apoptosis rate (%) 13.1±3.0 24.5±6.4


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3712-3712
Author(s):  
Christian Reimann ◽  
Andrea Schiavo ◽  
Julien Rouiller ◽  
Elodie Vidal ◽  
Kheira Beldjord ◽  
...  

Abstract Abstract 3712 Injection of donor derived T-cellular precursors has been proposed as a novel strategy to shorten delayed reconstitution of the T-lymphoid compartment following HSCT. In the past years, several research groups have successfully generated murine and human T-cellular precursors in vitro using Notchligand-based coculture systems such as OP9-DL1 or Tst-DL4. Murine T-cellular precursors generated in vitro, promoted reconstitution of the T-cellular compartment when applied in murine HSCT-models. In consistency, transfer of human T-cellular precursors, generated in vitro in coculture with OP9-DL1 or Tst-DL4 resulted in enhanced thymic repopulation in NOD/SCID/gc−/− mice. Yet, positive effects on peripheral T-cell reconstitution have not been reported. Moreover, clinical application of OP9-DL1 or Tst-DL4 coculture systems is limited, since they consist of murine stromal cells transduced with either DL1 or DL4. It has been described that exposure of CD34+ cells to immobilized DL4 induces T-cell differentiation in vitro and allows expansion human T-cellular precursors even in absence of stromal cell support. However, the hypothesis that DL4 alone can drive hematopoietic progenitors towards a T-cell fate in vitro, requires more evidence. Here, we further characterized the in vitro and in vivo potential of T-cellular precursors generated by single exposure to DL4. We exposed human CD34+ progenitors to immobilized DL4 in the presence of different cytokine combinations implicated in human haematopoiesis. Within 7 days, CD34+CD7+ and CD34−CD7++ T-cellular precursors emerged in the presence of DL4, but not under control conditions. After 7 days the CD34+CD7+ population subsequently declined while the CD34−CD7++ population further expanded. Two distinct progenitor subsets, CD5+ and CD5-, emerged within the CD34−CD7++ population. The CD34−CD7++CD5+ subset partially acquired CD1a, corresponding to a developmental stage between the early thymic progenitor (ETP) and the prethymocyte (pre-T) stage. Conversely to what observed in the OP9-DL1 system, T-cell development did not progress beyond the pre-T-stage. Indeed, we neither observed more advanced stages of T-cell development, such as immature single positive CD4+ cells, nor complete TCR-rearrangements. 7-day exposure to immobilized DL4 induced a 90-fold increase of T-precursor frequency in CD34+ progenitors (1/8800 before culture vs. 1/90 after culture) as confirmed by limiting dilution assays on OP9-DL1. All T-cellular precursor activity was restricted to cells expressing CD34, CD7 or both (frequency: 1/9). In particular, elevated T-cellular precursor levels were found in the subsets expressing CD7 (CD34+/CD7+ and CD34−/CD7+), while the T-cellular precursor frequency in the CD34+/CD7− subset was equal to that seen in non-cultured CD34+ progenitors. In consistency the CD34−CD7− population did not contain any detectable T-cellular precursors. After 7 day exposure to DL4, cells phenotypically corresponding to T-cellular precursors were transferred into NOD/SCID/gc−/− mice. Within 2 months following HSCT, cells exposed to DL4 were able to reconstitute the recipients' thymus and partially gave rise to peripheral T-cells. When injecting non-cultured CD34+ progenitors, thymic reconstitution was likewise seen 2 months after HSCT. However, intrathymic T-cell development was less advanced and peripheral T-cells were absent. In contrast, cells cultured in presence of a control peptide did not retain any potential to repopulate the recipients' thymus. Our experiments provide further evidence that exposure DL4 induces early human T-cell development and allows generation of large numbers of T-cellular precursors in vitro. These precursors feature phenotypical and molecular properties corresponding to early precursors found in the human thymus. Furthermore, they have an increased potential to further differentiate into mature T-cells in vitro and when transferred into immunodeficient mice. Our preliminary data suggest, that injection of T-cellular precursors accelerates T-cell reconstitution after HSCT and provides further evidence for the feasibility of this novel strategy of immunotherapy. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document