The Supportive Role Of Mesenchymal Stem Cells On Normal Hematopoietic Stem Cells Is Impaired In Leukemic Bone Marrow

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1214-1214
Author(s):  
Meiguang Lin ◽  
Yakun Pang ◽  
Yawei Zheng ◽  
Xin Gu ◽  
Feng-chun Yang ◽  
...  

Abstract Mesenchymal stem cells (MSCs) have been shown to be able to form a niche that maintains hematopoietic stem cells (HSCs). However, how the phonotypical characteristics and biological functions of MSCs are affected and especially whether their supporting role on normal HSC is impaired in leukemic microenvironment, are not well defined. Here, we have examined the changes of biological characteristics of mouse MSCs and in particular their supporting function on normal HSCs in Notch1-induced acute T cell lymphocytic leukemia (T-ALL) mice (Hu et al, Blood 2009; 114:3783-3792). MSCs were sorted based on the phenotypic markers, PDGFRα+Sca-1+CD45-TER119- (PαS) (Houlihan et al, Nat Protoc 2012) from control or T-ALL mice and flow cytometric analysis was conducted at different time points during leukemia development. Our results showed there was no significant difference between T-ALL and control mice regarding the absolute number and percentage of PαS MSCs in total bone marrow mono-nuclear cells (BMMNCs), cell cycling status and the percentage of apoptosis of freshly sorted PαS MSCs. Moreover, PαS MSCs from both normal and T-ALL leukemic marrow had similar morphology (spindle and polymorphic shaped), and uniformly expressed known cell surface markers for cultured mouse MSCs (CD29, CD44, Sca-1). However, the number of T-ALL PαS MSCs colony forming unit-fibroblastic (CFU-F) formation was 3-fold lower than control CFU-F (p<0.001). Levels of mRNA expression of genes associated with adipogenic (adipsin, mLP, PPARγ), osteogenic (Bmp4, Sp7, Bglap) and chondrogenic (collagen II, collagen X, aggrecan) differentiation in PαS MSCs were significantly decreased in T-ALL mice compared with control mice (p<0.05). These results suggest that the proliferation potential and the differentiation potential of MSC were decreased in the leukemic environment. To investigate whether the decrease in the proliferation of T-ALL PαS MSCs was associated with a change in cellular senescence, β-galactosidase activity and quantitative RT-PCR analysis of genes associated with senescence were performed. Our finding showed a significant increase in the number of β-galactosidase–positive cells (control/T-ALL; 3.11±0.20%/3.99±0.08%, p<0.05) and in the mRNA expression level of senescence-related gene p16 in PαS MSCs T-ALL mice compared with control mice (control/T-ALL; 1.00±0.03/1.57±0.17, p<0.05). These results imply that p16 plays an important role in PαS MSCs senescence in T-ALL microenvironment. To determine whether the supporting function of T-ALL PαS MSCs on normal HSCs proliferation is impaired, the cobble-stone area forming cell (CAFC) assay, an in vitro surrogate for HSCs, was applied. Normal control or T-ALL PαS MSCs were co-cultured with the same pool of normal HSCs. After 5 weeks, co-cultures containing normal PαS MSC formed multiple large CAFCs. On the contrast, T-ALL PαS MSCs supported 7-fold less hypocellular CAFCs (p<0.05). This data indicate that T-ALL PαS MSCs have a reduced ability to support normal HSCs proliferation in vitro. To further validate the change of PαS MSCs’ supporting function on normal HSCs proliferation in leukemic microenvironment observed in vitro, in vivo co-transplantation study were performed. Our preliminary results further indicated that the supporting function of MSCs on normal hematopoiesis in the leukemic microenvironment was compromised. In conclusion, dysfunction of MSC, an important component of HSC microenvironment, may play a crucial role in the suppression of HSC during leukemia development. Improving the function of MSC may serve as a new strategy to enhance normal hematopoiesis in leukemic marrow. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2563-2563
Author(s):  
Fernando Fierro ◽  
Thomas Illmer ◽  
Duhoui Jing ◽  
Philip Le Coutre ◽  
Gerhard Ehninger ◽  
...  

Abstract Recent data show that the tyrosine kinase inhibitor Imatinib mesylate (IM) also affects normal hematopoietic stem cells (HSC), T lymphocyte activation and dendritic cell function not relying on the specific inhibition of bcr-abl activity. Mesenchymal stem cells (MSC) have been identified in the bone marrow (BM) as multipotent non-hematopoietic progenitor cells that differentiate into osteoblasts, adipocytes, chondrocytes, tenocytes, skeletal myocytes, and cells of visceral mesoderm. MSC interact with HSC, influencing their homing and differentiation through cell-cell contact and the production of factors including chemokines We evaluated possible effects of IM in vitro on human bone marrow-derived MSC. Screening the activity of fourty-two receptor tyrosine kinases by a phospho-receptor tyrosine kinase (RTK)-array revealed an exclusive inhibition of platelet-derived growth factor receptor (PDGFRβ) by IM which consequently affects downstream targets of PDGFRβ as Akt and Erk1/2 signalling pathways in a concentration and time dependent manner. Furthermore, perinuclear multivesicular bodies harbouring PDGFRβ were found within 18–20 hours culture of MSC in the presence of 5 μM IM. Cell proliferation and clonogenicity (evaluated as the capability to form colony forming units - fibroblasts (CFU-F)) of MSC were significantly inhibited by IM in a concentration dependent fashion. IM inhibits significantly the differentiation process of MSC into osteoblasts as evaluated by decreased alkaline phosphatase activity and reduced calcium phosphate precipitates. In contrary, differentiation of MSC into adipocytes was strongly favoured in presence of IM. All these functional deficits described, probably contribute to an observed 50% reduction in the support of clonogenic hematopoietic stem cells, as evaluated by a long term culture-initiating cells (LTC-IC)-based assay. In summary our experiments show that IM inhibits the capacity of human MSC to proliferate and to differentiate into the osteogenic lineage, favouring adipogenesis. This effect is mainly mediated by an inhibition of PDGFRβ autophosphorylation leading to a more pronounced inhibition of PI3K/Akt compared to Erk1/2 signalling. This work confirms the role of PDGFRβ recently described for the proliferation and differentiation potential of MSC and provides a first possible explanation for the altered bone metabolism found in certain patients treated with IM.


2016 ◽  
Vol 364 (3) ◽  
pp. 573-584 ◽  
Author(s):  
Patrick Wuchter ◽  
Rainer Saffrich ◽  
Stefan Giselbrecht ◽  
Cordula Nies ◽  
Hanna Lorig ◽  
...  

2018 ◽  
Vol 30 (1) ◽  
pp. 231
Author(s):  
J. Cortez ◽  
J. Bahamonde ◽  
J. Palomino ◽  
M. De los Reyes ◽  
C. Torres ◽  
...  

During the last few years, the in vitro derivation of germ cell lineages from stem cells has emerged as an exciting new strategy for obtaining mature gametes. In vitro gamete derivation technology has potential applications as an alternative method for dissemination of elite animal genetics, production of transgenic animals, and conservation of endangered species. Germ cell differentiation and gametogenesis is a complex process and potential of different stem cell donors (i.e. SSC, ESC, iPSC) for in vitro male germ cell derivation has been inconsistent. Mesenchymal stem cells (MSC) may be suitable candidates for in vitro gamete derivation considering their (1) plasticity that is not limited to mesodermal derivatives, (2) availability of abundant tissues sources for isolation, (3) high proliferative potential, (4) simple and inexpensive isolation, and (5) high potential for cell therapy, including autologous or allogenic transplantation. The present study aimed to induce differentiation of MSC isolated from bone marrow derived from bovine male fetuses (bfMSC) into the germ cell lineage using an in vitro approach based on the exogenous effect of retinoic acid (RA) and bone morphogenetic protein 4 (BMP4). Differentiation media consisted in control media (DMEM with high glucose plus 10% fetal bovine serum, 100 IU mL−1 penicillin, 100 μg mL−1 streptomycin, and 0.25 μg mL−1amphotericin B) supplemented with RA (0.01, 0.1, or 1 µM) or BMP4 (10, 50, or 100 ng mL−1). Cell samples were obtained from differentiating and control bfMSC cultures and analysed for expression of housekeeping genes β-ACTIN and GAPDH, pluripotent genes OCT4 and NANOG, germ cell genes FRAGILLIS, STELLA, and VASA, male germ cell genes DAZL, PIWIl2, and STRA8, and meiotic biomarker SCP3 by quantitative-PCR (Q-PCR). OCT4, NANOG, and DAZL were immunodetected in undifferentiated and differentiated bfMSC using flow-cytometry analysis. The mRNA expression of DAZL was activated by RA or BMP4 supplementation, although no differences (P > 0.05) were detected among different concentrations. DAZL and NANOG mRNA levels increased (P < 0.05) from Day 7 to Day 21 during supplementation of RA (0.1 μM). In comparison, DAZL mRNA levels increased (P < 0.05) at Day 14 during supplementation of BMP4 (100 ng). OCT4 and SCP3 mRNA levels were not affected by RA or BMP4 treatments. Transcripts of FRAGILLIS, STELLA, VASA, PIWIl2, and STRA8 were not detected in control or differentiated bfMSC. Higher (P < 0.05) percentages of undifferentiated bfMSC were positive for NANOG (80.6%) and OCT4 (83.4%). DAZL- and NANOG-positive cells were 2.1% and 2.9%, and 95.9% and 97.8% at Days 0 and 21 of RA treatment, respectively. Data indicated that expression of germ cell biomarker DAZL in bfMSC is activated and increased after in vitro supplementation of RA and BMP4. Moreover, NANOG mRNA levels were regulated by RA treatment. Similar levels of SCP3 mRNA expression suggest that differentiated bfMSC were not induced into meiosis. Thus, exposure of bfMSC to RA or BMP4 under in vitro conditions might induce an early stage of premeiotic germinal differentiation.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Huihong Zeng ◽  
Jiaoqi Cheng ◽  
Ying Fan ◽  
Yingying Luan ◽  
Juan Yang ◽  
...  

Development of hematopoietic stem cells is a complex process, which has been extensively investigated. Hematopoietic stem cells (HSCs) in mouse fetal liver are highly expanded to prepare for mobilization of HSCs into the fetal bone marrow. It is not completely known how the fetal liver niche regulates HSC expansion without loss of self-renewal ability. We reviewed current progress about the effects of fetal liver niche, chemokine, cytokine, and signaling pathways on HSC self-renewal, proliferation, and expansion. We discussed the molecular regulations of fetal HSC expansion in mouse and zebrafish. It is also unknown how HSCs from the fetal liver mobilize, circulate, and reside into the fetal bone marrow niche. We reviewed how extrinsic and intrinsic factors regulate mobilization of fetal liver HSCs into the fetal bone marrow, which provides tools to improve HSC engraftment efficiency during HSC transplantation. Understanding the regulation of fetal liver HSC mobilization into the fetal bone marrow will help us to design proper clinical therapeutic protocol for disease treatment like leukemia during pregnancy. We prospect that fetal cells, including hepatocytes and endothelial and hematopoietic cells, might regulate fetal liver HSC expansion. Components from vascular endothelial cells and bones might also modulate the lodging of fetal liver HSCs into the bone marrow. The current review holds great potential to deeply understand the molecular regulations of HSCs in the fetal liver and bone marrow in mammals, which will be helpful to efficiently expand HSCs in vitro.


Blood ◽  
2015 ◽  
Vol 125 (17) ◽  
pp. 2678-2688 ◽  
Author(s):  
Marisa Bowers ◽  
Bin Zhang ◽  
Yinwei Ho ◽  
Puneet Agarwal ◽  
Ching-Cheng Chen ◽  
...  

Key Points Bone marrow OB ablation leads to reduced quiescence, long-term engraftment, and self-renewal capacity of hematopoietic stem cells. Significantly accelerated leukemia development and reduced survival are seen in transgenic BCR-ABL mice following OB ablation.


Sign in / Sign up

Export Citation Format

Share Document