Growth Inhibitory Function Of a Novel T-LAK Cell-Originated Protein Kinase Inhibitor On FLT3-ITD Positive Acute Myeloid Leukemia (AML) Cells

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1459-1459
Author(s):  
Houda Alachkar ◽  
Jae-Hyun Park ◽  
Makoto Nakakido ◽  
Alex Wood ◽  
Gordana Raca ◽  
...  

Abstract T-LAK cell-originated protein kinase (TOPK/PBK), a serine-threonine mitogen-activated protein kinase kinase is highly expressed and correlated with more aggressive disease in several types of cancer, but is undetectable in normal tissues except the testis and fetal tissues. TOPK is up-regulated in a variety of hematologic malignancies including acute myeloid leukemia (AML) and may be involved in disease pathogenesis. To investigate the role of TOPK in AML and to develop the rationale for therapeutic targeting, we initially examined the expression level of TOPK protein in AML cell lines by western blot analysis. TOPK expression was detected at high levels in 8 out of 11 AML cell lines. Importantly, TOPK was not detected in mobilized, peripheral blood-derived stem cells from healthy donors. To determine the role of TOPK in AML, we utilized a loss of function approach in two AML cell lines (MV4-11 and U937 cells) and assessed cell viability and apoptosis by MTS and Annexin/PI staining assays, respectively. Cells transfected with TOPK-siRNA showed significant decrease in cell viability (∼70%, P<0.001, both cell lines) and significant increase in apoptosis 48 hours following transfection compared to cells transfected with control-siRNA. A small molecule compound that inhibits TOPK kinase is currently undergoing pharmaceutical development for cancer treatment. We treated nine AML cell lines with the compound for 48 hours and assessed cells viability by MTS assay. Decrease in cell viability following treatment with increasing doses of the compound was noted with variable sensitivities among AML cell lines. In addition, the compound showed enhancement of cell differentiation assessed by CD11b staining in U937 cells. Cell lines with FLT3 mutations (MV4-11, MOLM13 and KOCL-48) were significantly more sensitive to the treatment compared to cell lines with unmutated FLT3. We next treated cells with increasing doses of the compound and assessed cells viability and apoptosis by MTS and flow cytometry assays. Following the treatment with the compound, IC50 was <10nM for MV4-11 and MOLM13 cells (FLT3-ITD positive cell lines), and >20nM for U937 and KG1 (FLT3-ITD negative cell lines). 40 nM of the compound induced apoptosis by ∼80% in MV4-11 and MOLM13 cells compared to 49% in U937 and 9% in KG1 cells, at 48 hours following treatment. We also validated the anti-leukemia activity in primary blasts from patients with AML (n=2). FLT3-ITD positive blasts had an IC50 of ∼15nM and showed 40% increase in apoptosis following treatment with 20nM of the compound. To gain a mechanistic insight into why FLT3-ITD mutant cells are preferentially sensitive to this TOPK inhibitor, we performed a gene expression profile microarray analysis on MV4-11 cells treated with 20nM of the compound or transfected with TOPK siRNA in comparison with untreated cells and cells transfected with control-siRNA. We observed significant downregulation in genes involved in cell cycle control pathways in the signatures associated with the compound-treated and TOPK siRNA-transfected cells. Interestingly, FLT3 was among the significantly downregulated genes in the compound treated cells (∼80%) and in TOPK-siRNA transfected cells (∼30%). We then examined the activity and the expression levels of FLT3 protein following the treatment. Consistently, we found that both the phospho-FLT3 and the total FLT3 protein levels were completely depleted in cells treated with 10, 20 and 40 nM of the compound as early as 16 hours following treatment. In conclusion, TOPK is highly expressed in AML and may act as novel therapeutic target. A novel TOPK kinase inhibitor exhibits preferential cytotoxicity to FLT3-ITD mutated AML cells, possibly through inhibition of FLT3 protein expression. Although further research is needed to determine the mechanism by which the compound inhibits FLT3 protein expression, this novel compound may represent a new targeted therapy for this adverse risk subset of patients with AML. Disclosures: Matsuo: OncoTherapy Science, Inc.: Employment. Nakamura:Oncotherapy Science. Ltd.: share holder Other.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5024-5024
Author(s):  
Youngsoo Kim ◽  
Tianyuan Zhou ◽  
Shuling Guo ◽  
Andy Siwkowski ◽  
Donna Witchell ◽  
...  

Abstract STAT5 is a key common downstream mediator of multiple signaling pathways which are often dysregulated in various hematologic malignancies, including acute myeloid leukemia (AML). Due to the heterogeneity and high relapse rate of the disease, the treatment options for AML are currently limited. Although the approach of treating the disease by inhibiting upstream kinases such as FLT3 within these signaling pathways appeared promising, the clinical efficacy of these drugs as mono-therapy have been disappointing. We hypothesized that this lack of efficacy might be due to the residual STAT5 activity that is present even in the presence of these inhibitors in vivo. Therefore, abrogating the expression of the final regulator of these pathways, STAT5, might be a much more efficient way of blocking signaling, thus inhibiting the proliferation and survival of AML cells. In this study, we first investigated the role of STAT5 in the proliferation of AML cells by selectively suppressing the expression of the gene using 2nd-Generation antisense oligonucleotides (ASOs). Suppression of STAT5 following ASO treatment (&gt;80% over control ASO) led to a significant inhibition of cell proliferation (50~70% over control ASO), a decrease in colony formation, and a modest induction of apoptosis in a range of AML lines including KG-1α, MV-4-11, and MOLM-13. STAT5 ASO treatment was highly specific for the STAT5 target and produced predictable effects on gene expression, as demonstrated by the downregulation of Pim-1 and cyclin D1, well-known STAT5 regulated genes. No changes in the expression levels of Bcl-XL, STAT1, and STAT3 were observed. Furthermore, relative anti-proliferative activity within the various AML lines correlated well with the relative levels of STAT5 activity. Interestingly, there was a strong correlation between the extent of STAT5/Pim-1 downregulation and the degree of anti-proliferation, suggesting a possible role of Pim-1 as a downstream effector of STAT5 ASO anti-proliferative activity. Studies comparing the relative effects of the STAT5 ASO inhibitor with the potent multi kinase inhibitor CEP701 in various AML cell lines demonstrated potent anti-proliferative activity for the STAT5 inhibitor in the cell lines including KG-1α that display resistance to the multi kinase inhibitor. Taken together, these results suggest that a STAT5 ASO therapeutic approach may have utility for the treatment of AML and related hematologic disorders.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 5132-5132
Author(s):  
Andoni Garitano-Trojaola ◽  
Eva Teufel ◽  
Nadine Rodhes ◽  
Jennifer Kreckel ◽  
Thorsten Stuehmer ◽  
...  

Abstract Acute Myeloid Leukemia (AML) is a genetically heterogenous disease characterized by clonal expansion of immature myeloid progenitors cells in the bone marrow (BM). Despite this genetic heterogeneity, AML patients share Leukemia associated oncogenes such as NF-E2-related factor 2 (Nrf2) (Rushworth SA et al.). NRF2 is a transcription factor that activates genes with antioxidant response elements (ARE)-containing promoters and protects cancer cells from apoptosis. Inhibition of NRF2 or antioxidant defense increases the level of Radical Oxygen Species (ROS), leading to tumor supression (Chio IIC et al.). Recently, the E3 Ubiquitin-Protein Ligase HACE1, a tumor suppressor in solid tumors, was demonstrated to promote the expression of NRF2 in Huntigton disease (Rotblat B et al.). Thus, we hypothesized a role for HACE1 as an oncogenic factor acting through NRF2 activation in myeloid malignancies and provide first data supporting the HACE1-NRF2 axis to be a novel target in acute myeloid leukemias. Material and methods The mRNA expression data from AML patients (296 samples) vs normal Hematopoietic Stem Cells (HSC) (6 samples) were exported from the bloodSpot database. HACE1 mRNA and protein expression was measured by q-RT-PCR and western blot in 12 commercially available Myeloid Malignancies cell lines. The HACE1 inducible knock down (KD) was carried out by Sleeping Beauty Transposon system in U937 and NOMO-1 cell lines. The cell viability was analyzed by Cell Titer Glo Luminescent assay. Apoptosis was measured by Annexin V (AV)/Propidium Iodide (PI) assay. Results and discussion HACE1 mRNA is downregulated in AML patients compared to HSC (***p<0.001, Bloodspot database). However mRNA and HACE1 protein expression do not correlate in AML cell lines, suggesting post translational modifications. High HACE1 protein expression was observed in most AML cell lines. HACE1 KD reduced drastically the cell viability of U937 cells through caspase activation and NRF2 degradation. However, no effect on cell viability was observed in NOMO-1 cells. Recently, non-programmed cell death necroptosis induction has been described by TNFR1 activation in HACE1 knock out Mouse Embrionic Fibroblast cells (Tortola L et al.). In line with this study, we observed that TNF induces strong cell death in HACE1 KD NOMO-1 cells within 48 hours. In addition HACE1 KD promotes autophagy through p62 degradation (late autophagy marker) in U937 cells. Autophagy has recently been described to contribute to the differentiation and death of AML cells, and to the promotion of immunostimulatory signals activating immune responses against cancer cells (Chen L et al.; Pietrocola F et al.). Thus HACE1 might be a potential target to induce autophagy, providing a novel therapeutical target in the treatment of myeloid malignancies. Finally, HACE1 KD in our hands promoted sensitization of U937 and NOMO-1 cells to cytatarabine, the backbone therapy in AML patients. This treatment promotes HACE1 protein expression at 24 and 48 hours in NOMO-1 cells, which may explain the better response rates of HACE1 KD cells to cytarabine. Taken together, we provide first evidence of HACE1 being a novel oncogene in AML and that the HACE1-NRF2 axis is a promising target in the treatment of Acute Myeloid Leukemias. Disclosures Haferlach: MLL Munich Leukemia Laboratory: Employment, Equity Ownership.


2020 ◽  
Vol 40 (4) ◽  
Author(s):  
Yi Xiao ◽  
Taoran Deng ◽  
Xi Ming ◽  
Jinhuang Xu

Abstract Tripartite motif (TRIM) 31 is a member of TRIM family and exerts oncogenic role in the progression and drug resistance of several cancers. However, little is known about the relevance of TRIM31 in acute myeloid leukemia (AML). Herein, we investigated the role of TRIM31 in AML. We examined the expression levels of TRIM31 in the blood samples from 34 patients with AML and 34 healthy volunteers using qRT-PCR. The mRNA levels of TRIM31 in human bone marrow stromal cells (HS-5) and five AML cell lines were also detected. Loss/gain-of-function assays were performed to assess the role of TRIM31 in AML cells proliferation, apoptosis and sensitivity to daunorubicin. The expression levels of pro-caspase 3, cleaved caspase 3, Wnt3a, β-catenin, cyclin D1 and c-Myc were measured using Western blot. TRIM31 expression levels were significantly up-regulated in AML patients and cell lines. Knockdown of TRIM31 suppressed cell proliferation and promoted apoptosis in AML-5 and U937 cells. The IC50 of daunorubicin was significantly decreased in TRIM31 siRNA (si-TRIM31) transfected cells. Oppositely, induced cell proliferation and decreased cell apoptosis were observed in pcDNA-3.1-TRIM31 transfected cells. Furthermore, knockdown of TRIM31 suppressed the activation of Wnt/β-catenin pathway in AML cells. Activation of Wnt/β-catenin pathway by LiCl abolished the effects of si-TRIM31 on cell proliferation, apoptosis and sensitivity to daunorubicin in AML cells. In conclusion, the results indicated that TRIM31 promoted leukemogenesis and chemoresistance to daunorubicin in AML. The oncogenic role of TRIM31 in AML was mediated by the Wnt/β-catenin pathway. Thus, TRIM31 might serve as a therapeutic target for the AML treatment.


2019 ◽  
Author(s):  
Yusuke Tarumoto ◽  
Shan Lin ◽  
Jinhua Wang ◽  
Joseph P. Milazzo ◽  
Yali Xu ◽  
...  

AbstractLineage-defining transcription factors (TFs) are compelling targets for leukemia therapy, yet they are among the most challenging proteins to modulate directly with small molecules. We previously used CRISPR screening to identify a Salt-Inducible Kinase 3 (SIK3) requirement for the growth of acute myeloid leukemia (AML) cell lines that overexpress the lineage TF MEF2C. In this context, SIK3 maintains MEF2C function by directly phosphorylating histone deacetylase 4 (HDAC4), a repressive cofactor of MEF2C. Here, we evaluated whether inhibition of SIK3 with the tool compound YKL-05-099 can suppress MEF2C function and attenuate disease progression in animal models of AML. Genetic targeting of SIK3 or MEF2C selectively suppressed the growth of transformed hematopoietic cells underin vitroandin vivoconditions. Similar phenotypes were obtained when exposing cells to YKL-05-099, which caused cell cycle arrest and apoptosis in MEF2C-expressing AML cell lines. An epigenomic analysis revealed that YKL-05-099 rapidly suppressed MEF2C function by altering the phosphorylation state and nuclear localization of HDAC4. Using a gatekeeper allele ofSIK3, we found that the anti-proliferative effects of YKL-05-099 occurred through on-target inhibition of SIK3 kinase activity. Based on these findings, we treated two different mouse models of MLL-AF9 AML with YKL-05-099, which attenuated disease progressionin vivoand extended animal survival at well-tolerated doses. These findings validate SIK3 as a therapeutic target in MEF2C-positive AML and provide a rationale for developing drug-like inhibitors of SIK3 for definitive pre-clinical investigation and for studies in human patients with leukemia.Key PointsAML cells are uniquely sensitive to genetic or chemical inhibition of Salt-Inducible Kinase 3in vitroandin vivo.A SIK inhibitor YKL-05-099 suppresses MEF2C function and AMLin vivo.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4645-4645 ◽  
Author(s):  
Chen Zhao ◽  
Xin Han ◽  
Yu H. Zhang ◽  
Xiaoyan Huang ◽  
Aili Dai ◽  
...  

Abstract Abstract 4645 DNA hypermethylation has been implicated in the tumorigenesis and prognosis in acute myeloid leukemia (AML). To identify and validate relevant methylated genes in AML, we have compared expression levels and methylation status of 26 candidate genes. One of the interesting candidates identified in our study is MSX2. MSX2 is a member of muscle segment homeobox gene family. MSX2 plays a role in promoting cell growth under certain conditions and may be an important target for RAS signaling pathways. However, the mechanism of transcriptional regulation and functional role of MSX2 in hematological malignancies, especially AML, are poorly understood. In our study, we determined the methylation status, and analyzed the expression levels of MSX2 in AML cell lines and primary AML cells using RT-PCR and/or Taqman real-time PCR. MSX2 mRNA expression was robust in the normal granulocytes and blasts of human bone-marrow, but was either absent or significantly diminished in 6 of 9 (66.7%) AML cell lines. The expression levels of MSX2 in those 6 AML cell lines were restored after treatment of 5-aza 2′-deoxycytidine. In addition, COBRA (Combined Bisulfite Restriction) analysis demonstrated hypermethylation of MSX2 in those AML cell lines (6 of 9, 66.7%), and partial methylation in 3 of 9 AML cell lines. The methylation status was inversely correlated with the mRNA expression levels of MSX2 in those cell lines. Furthermore, the expression levels and methylation status of MSX2 in human primary AML cells were evaluated. COBRA analysis demonstrated frequent hypermethylation of MSX2 in primary AML patient samples (19 of 32, 59.3%). Importantly, the mRNA expression levels of MSX2 as shown by Taqman real-time PCR in those 19 primary AML patient samples were inversely correlated with the methylation status of MSX2. These findings confirmed the role of frequent DNA hypermethylation in silencing MSX2 in AML. We are in the process of determining the functional role of MSX2 in the pathogenesis of AML. In addition, diagnostic and prognostic values of MSX2 in AML are being pursued. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 581-581
Author(s):  
Patrick Griffin ◽  
Steffan T Nawrocki ◽  
Takashi Satou ◽  
Claudia M Espitia ◽  
Kevin R. Kelly ◽  
...  

Abstract Abstract 581 The long-term prognosis for the majority of patients diagnosed with acute myeloid leukemia (AML) is very poor due, in part, to pre-existing myelodysplasia, multidrug resistance, and co-existing morbidities that limit therapeutic options. Novel strategies are essential in order to improve clinical outcomes. TAK-901 is an investigational small molecule kinase inhibitor that is currently being evaluated in Phase I trials. In preclinical studies, TAK-901 has demonstrated significant effects against a number of kinases with important roles in cancer including the Aurora kinases, which are key regulators of mitosis and whose overexpression in cancer promotes genetic instability, malignant pathogenesis, and drug resistance. We hypothesized that simultaneously targeting the activity of the Auroras and other oncogenic kinases with TAK-901 would disrupt AML pathogenesis. In order to test our hypothesis, we investigated the efficacy and pharmacodynamic activity of TAK-901 human AML cell lines, primary AML specimens, and an orthotopic bioluminescent disseminated mouse model of AML. TAK-901 potently diminished the viability of a panel of 8 AML cell lines as well as primary cells obtained from patients with AML. Acute exposure to TAK-901 ablated clonogenic survival, triggered the accumulation of polyploid cells, and induced apoptosis. The cytostatic and cytotoxic effects of TAK-901 were associated with significantly increased expression of the cyclin-dependent kinase inhibitor p27, growth arrest and DNA-damage-inducible 45a (GADD45a), and the BH3-only pro-apoptotic protein PUMA. Chromatin immunoprecipitation (ChIP) assays revealed that the elevation in the expression of these genes caused by administration of TAK-901 was due to increased FOXO3a transcriptional activity. The in vivo anti-leukemic activity of TAK-901 was investigated in a disseminated xenograft mouse model of AML established by intravenous injection of luciferase-expressing MV4-11 cells. IVIS Xenogen imaging was utilized to monitor disease burden throughout the study. In this mouse model, administration of TAK-901 was very well-tolerated and significantly more effective than the standard of care drug cytarabine with respect to suppressing disease progression and prolonging overall survival. Analysis of specimens collected from mice demonstrated that TAK-901 inhibited the homing of AML cells to the bone marrow microenvironment and induced AML cell apoptosis in vivo. Our collective findings indicate that TAK-901 is a novel multi-targeted kinase inhibitor that has significant preclinical activity in AML models and warrants further investigation. Disclosures: Satou: Takeda Pharmaceuticals: Employment. Hasegawa:Takeda Pharmaceuticals: Employment. Romanelli:Millennium Pharmaceuticals: Employment. de Jong:Takeda San Diego: Employment. Carew:Millennium Pharmaceuticals: Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3548-3548
Author(s):  
Marcos R Estecio ◽  
Sirisha Maddipoti ◽  
Courtney D. DiNardo ◽  
Hui Yang ◽  
William S Stevenson ◽  
...  

Abstract The RUNX family of transcription factors forms the DNA binding α-chain partners of the heterodimeric core binding factor (CBF) complex. Each of the RUNX proteins, RUNX1, RUNX2, and RUNX3, can form heterodimers with CBFβ. In the M4Eo subtype of human acute leukemia, the chromosomal translocation resulting in inversion 16 encodes a chimeric protein in which CBFβ is fused to smooth muscle myosin heavy chain (SMMHC). Although the exact mechanism of leukemogenesis by this chimera is unknown, it is thought that CBFβ-SMMHC sequesters RUNX1 in the cytoplasm and antagonizes its normal function. Although the role of RUNX1 in hematopoiesis has been previously well-established, recent data have indicated that the RUNX3 gene may also play a key role in the development of human acute leukemias. To clarify the role of RUNX3 in acute myeloid leukemia (AML), we investigated its expression and promoter DNA methylation in leukemia cell lines and patient samples. Eleven human leukemia cell lines of myeloid origin and twelve of lymphoid origin were used in this study. Cell suspensions from bone marrow aspirate specimens from patients with AML (69 cases), MDS (19 cases) and ALL (6 cases) were obtained prior to therapy from established tissue blocks. Peripheral blood samples were obtained from four healthy volunteers, and CD34+ cells were obtained from another four individuals. Methylation status of the gene promoters of RUNX1, RUNX2 and RUNX3 were evaluated using the Pyrosequencing Methylation Assay (PMA) method, and expression of RUNX3 was analyzed by quantitative real-time PCR and immunohistochemical staining. Hypermethylation of RUNX1 and RUNX2 was rare in cell lines; RUNX1 was not hypermethylated in any of the studied samples, and RUNX2 was hypermethylated in only two cell lines. In contrast, we found that the RUNX3 promoter was hypermethylated in 17 of the cell lines (74%). Interestingly, we observed a trend toward higher frequency of hypermethylation of RUNX3 in cell lines of myeloid (90%) compared to lymphoid (57%) origin. In patient samples, RUNX3 promoter methylation was below 15% in normal samples, and hypermethylation was found in 32/69 AML samples (46%), 4/19 MDS samples (21%), and 6/6 ALL samples (100%). Of the 69 AML samples, 19 were classified as AML M4Eo, and 50 were other types of AML. 84% of the human AML M4Eo samples were hypermethylated at the RUNX3 promoter region, whereas only 34% of the other AML subtypes were hypermethylated. We also evaluated DNA methylation of RUNX1 and RUNX2 in a subgroup of these samples (66 samples for RUNX1 and 72 for RUNX2) and found that, as in cell lines, these genes are almost universally unmethylated; with the exception of a single AML case, all studied samples presented no promoter methylation. As support of functional outcome, hypermethylation of RUNX3 was correlated with both lower levels of mRNA and protein, as confirmed by qRT-PCR and immunohistochemistry analysis in cell lines and patient samples, and treatment with the DNA demethylating agent Decitabine resulted in mRNA re-expression of RUNX3 concomitantly with decreased promoter methylation. Finally, we compared clinicopathological features of patients with and without RUNX3 methylation. In this analysis, only non-M4Eo AML cases were compared because of the small number of non-methylated patients in the M4Eo group. Differences were found neither for blood counts nor for overall survival probability. However, relapse-free survival was significantly better for the unmethylated group (p=0.016). In summary, we showed that promoter methylation of the RUNX3 gene and down regulation of RUNX3 expression occurs almost universally in M4Eo/inversion 16 AMLs, and that in cell lines, RUNX3 repression can be reversed by treatment with the hypomethylating agent decitabine. These results suggest that silencing of RUNX3 is likely an important target in CBF leukemia and that future studies should be dedicated to further characterize the role of RUNX3 in inversion 16 AML and its predictive value of relapse-free survival in AML. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 915-915
Author(s):  
Stuart A Rushworth ◽  
Lyubov Zaitseva ◽  
Megan Y Murray ◽  
Matthew J Lawes ◽  
David J MacEwan ◽  
...  

Abstract Introduction Despite recent significant progress in the understanding of the biology of acute myeloid leukemia (AML) the clinical outcomes for the majority of patients diagnosed with AML presently remain poor. Consequently, there is an urgent need to identify pharmacological strategies in AML, which are not only effective but can be tolerated by the older, less well patient. Recently our group and others have shown that there is high Bruton’s Tyrosine Kinase (BTK) phosphorylation and RNA expression in AML. Moreover, our recent study described for the first time that ibrutinib and BTK-targeted RNA interference reduced factor-induced proliferation of both AML cell lines and primary AML blasts, as well as reducing AML blast adhesion to bone marrow stromal cells. Inhibition of BTK has been shown to regulate chronic lymphocytic leukemia, mantle cell lymphoma and multiple myeloma cell migration by inhibiting SDF1 (stromal derived factor 1) induced CXCR4 regulated cell trafficking. Here we report that in human AML ibrutinib in addition functions in a similar way to inhibit SDF1/CXCR4-mediated AML migration at concentrations achievable in vivo. Methods To investigate the role of BTK in regulating AML migration we used both pharmacological inhibitor ibrutinib and genetic knockdown using a lentivirus mediated BTK targeted miRNA in primary AML blasts and AML cell lines. We examined migration of AML blasts and AML cells to SDF-1 using Transwell permeable plates with 8.0µM pores. Western blotting was used to examine the role of SDF-1 in regulating BTK, AKT and MAPK activation in primary AML blasts. Results We initially examined the expression of CXCR4 in human AML cell lines and found that 4/4 cell lines were positive for CXCR4 expression. Next we examined the effects of ibrutinib on the migration of the AML cell lines U937, MV4-11, HL60 and THP-1 in response to SDF1. We found that ibrutinib can inhibit the migration of all AML cell lines tested. We tested the in-vitro activity of ibrutinib on SDF-1 induced migration in a spectrum of primary AML blasts from a wide age spectrum of adult patients and across a range of WHO AML subclasses and found that ibrutinib significantly inhibits primary AML blast migration (n=12). Next we found that ibrutinib can inhibit SDF-1 induced BTK phosphorylation and downstream MAPK and AKT signalling in primary AML blast. Finally to eliminate the problems associated with off target ibrutinib activity we evaluated migration of AML cells lines using genetic inhibition of BTK. The introduction of BTK-specific miRNA dramatically inhibited the expression of BTK in THP-1 and HL60 and reduced SDF1 mediated migration confirming that BTK is involved in regulating AML migration in response to SDF1. Conclusions These results reported here provide a molecular mechanistic rationale for clinically evaluating BTK inhibition in AML patients and suggests that in some AML patients the blasts count may initially rise in response to ibrutinib therapy, analgous to similar clinical observations in CLL. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document