Distinct Signaling By Chimeric Antigen Receptors (CARs) Containing CD28 Signaling Domain Versus 4-1BB In Primary Human T Cells

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2902-2902 ◽  
Author(s):  
Omkar Uday Kawalekar ◽  
Avery D. Posey ◽  
Joseph Fraietta ◽  
Jihyun Lee ◽  
John Scholler ◽  
...  

Abstract Background Chimeric Antigen Receptors (CARs) have shown great promise in the field of targeted adoptive immunotherapy against cancer. These receptors are specific for tumor antigens and have the binding properties of monoclonal antibodies with signaling molecules of T cells. When expressed on T cells, these receptors help the cells home to tumor targets and perform their cytotoxic functions. CARs containing the 4-1BB signaling domain have been used against B-cell chronic lymphocytic leukemia and have shown the most clinical success in terms of tumor targeting and persistence in patients upon engraftment. In contrast, their CD28-containing CAR counterpart failed to show comparable persistence in patients. Despite extensive clinical use, the detailed molecular mechanisms involved in the activation of CAR-grafted T cells remain elusive. To address this, we hypothesize that CARs take advantage of the endogenous T cell receptor (TCR) signaling pathways in a manner unique to their analogous intracellular domains. Methods By electroporation of CAR encoding in vitro transcribed RNA into primary human T cells, we achieved >90% CAR-positive T cell population. We expressed different CARs constructs, all specific for a widely expressed tumor antigen - mesothelin. Keeping the scFv region constant to SS1 that is specific for mesothelin, we varied the intracellular signaling domains (ICDs) ranging from first generation CARs (containing only the CD3z ICD) to the second generation CARs (CD28-CD3z or 41BB-CD3z ICDs) Upon verifying CAR expression by flow cytometry, these T cells were stimulated with mesothelin antigen to analyze differences in signaling between the different CAR groups. Results Here we report that CARs with CD28 show stronger activation of T cells when compared to CARs with 4-1BB or CD3z alone. Stimulation of different CAR constructs revealed that the antigen-specific activation threshold for CAR-T cells is greatly reduced when the CD28 endodomain is included in the CAR architecture. This activation state, measured by the activation of proximal signaling proteins, as well as the MAPK and Akt signaling pathways continues to increase and persist for longer time durations in T cells with the CD28-containing CAR construct. Co-immunoprecipitation studies reveal direct interaction of CARs with pZAP70 and TRAF proteins, but not other known signaling molecules of the TCR complex. T cells with CARs containing CD28 intracellular domain showed a high and sustained level of calcium flux in comparison to T cells with the 4-1BB containing CARs. Experiments to determine the molecular signatures of CAR-grafted T cells stimulated with cognate antigen for longer time durations are currently underway. Taken together, these studies have significant impact on the future design of CARs and adoptive immunotherapy. Disclosures: Kawalekar: Novartis: Research Funding. Posey:Novartis: Research Funding. Fraietta:Novartis: Research Funding. Lee:Novartis: Research Funding. Zhao:Novartis: Research Funding. June:Novartis: Research Funding.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2043-2043 ◽  
Author(s):  
Ulrike Mock* ◽  
Lauren Nickolay* ◽  
Gordon Weng-Kit Cheung ◽  
Hong Zhan ◽  
Karl Peggs ◽  
...  

Abstract BACKGROUND Genetically modified T cells have enormous potential for the treatment of relapsed and refractory haematopoietic malignancies. CD19-positive B-cell malignancies including acute lymphoblastic leukaemia (ALL), chronic lymphocytic leukaemia (CLL) or B cell non-Hodgkin lymphomas (NHL) have been shown to be an excellent target for adoptive immunotherapy with T cells expressing CD19-specific chimeric antigen receptors (CARs). The increasing need for genetically modified T cells is hampered by the limited number of centres with the required infrastructure and expertise to produce this complex therapeutic product. Ex vivo modification of T cells requires isolation, activation, transduction, expansion and cryopreservation steps. To simplify procedures and widen applicability for clinical therapies, Miltenyi Biotec has developed the CliniMACS Prodigy platform and is automating complex cell manufacturing processes. These have now been adapted for lentiviral transduction of T cells and we show the feasibility and effectiveness of the device for adoptive immunotherapy using chimeric antigen receptors. METHODS A self-inactivating third generation lentiviral vector encoding a CAR specific for CD19 (CAR19) was used for automated T-cell transductions (TCT). Using closed single-use tubing sets (TS520), fresh or cryopreserved peripheral blood mononuclear cells from non-mobilised leukapheresis collected from healthy donors were loaded onto the CliniMACS Prodigy, washed and activated in TexMACS media with TransAct, a polymeric nanomatrix activation reagent agonist for CD3 and CD28. Cells were transduced 24-48h after activation and expanded in the CentriCult-Unit of the tubing set, allowing for stable culture conditions as well as automated feeding and media exchange. Small and large scale comparison transductions were run in parallel to assess the efficiency of the automated T-cell modification. Finally, cells were harvested and cryopreserved to assess the functional capabilities of CAR19 T cells. RESULTS Three automated TCT runs were performed and continuously monitored to assess cell expansion, transduction efficiency and the phenotype of the final cell product. On average, expansion during automated cultivation was 11.7x (range: 5.4 - 22.8x) which was comparable to the expansion achieved in small scale controls (12.3x ± 1.2x). The average yield from the automated process was 11.8x108 total lymphocytes/run (ranging between 4 - 23.2x108 lymphocytes/run). Notably, this was comparable to existing CAR19 T cell manufacturing processes using a WAVE-Bioreactor. In all three runs in the Prodigy, successful transduction was observed with an average transduction efficiency of 32% CAR19-positive cells (range: 22- 45%). Again, this was similar to transduction efficiencies (32% CAR19-positive; range: 27-40%) in previous WAVE-production campaigns using X-Vivo15 media and magnetic beads conjugated with anti-CD3/CD28 antibodies for T-cell activation (Dynabeads). Flow cytometry analysis of the final cell product showed a high purity of CD45+/CD3+ cells (90%) as well as a relatively high frequency of CD8-positive cytotoxic T cells (56%). Immunophenotyping revealed high expression of CD45RA, CD62L, CD27 and CD95 with moderate expression of CCR7. Importantly, no significant difference in PD-1 expression was observed between automatically and manually processed cells. Finally, functional analysis showed cytotoxic activity as well as IFN-γ/TNF-α production upon co-cultivation with CD19-expressing target cells. CONCLUSION In summary, we have demonstrated the feasibility of the CliniMACS Prodigy for the generation of CAR+ T cells for adoptive immunotherapy. Automated activation, transduction and expansion resulted in clinically relevant doses of CAR19 T cells with very little 'hands-on' operator time. Given the closed-system nature of the device, and automated features, the CliniMACS Prodigy should widen applicability of T-cell engineering beyond centres with highly specialised infrastructures. Disclosures Mock*: Miltenyi Biotec GmbH: Research Funding. Nickolay*:Miltenyi Biotec GmbH: Research Funding. Peggs:Cellectis: Research Funding; Autolus: Consultancy, Equity Ownership. Johnston:Miltenyi Biotec GmbH: Employment. Kaiser:Miltenyi Biotec GmbH: Employment. Pule:CELLECTIS: Research Funding; AUTOLUS: Employment, Equity Ownership, Research Funding; AMGEN: Honoraria; UCLB: Patents & Royalties. Thrasher:Miltenyi Biotec GmbH: Research Funding; Autolus Ltd: Consultancy, Equity Ownership, Research Funding. Qasim:Cellectis: Research Funding; Miltenyi Biotec GmbH: Research Funding; Autolus Ltd: Consultancy, Equity Ownership, Research Funding; Cell Medica: Research Funding.


2020 ◽  
Vol 4 (21) ◽  
pp. 5343-5356
Author(s):  
Laura R. E. Becher ◽  
Wendy K. Nevala ◽  
Shari Lee Sutor ◽  
Megan Abergel ◽  
Michele M. Hoffmann ◽  
...  

Abstract Human cytomegalovirus (HCMV) induces long-lasting T-cell immune responses that control but do not clear infection. Typical responses involve private T-cell clones, expressing T-cell antigen receptors (TCRs) unique to a person, and public T-cell clones with identical TCRs active in different people. Here, we report the development of a pretherapeutic immunostimulation modality against HCMV for human T cells, CD3 copotentiation, and the clonal analysis of its effects in recall assays at single-cell resolution. CD3 copotentiation of human T cells required identification of an intrinsically inert anti-CD3 Fab fragment that conditionally augmented signaling only when TCR was coengaged with antigen. When applied in recall assays, CD3 copotentiation enhanced the expansion of both public and private T-cell clones responding to autologous HLA-A2(+) antigen-presenting cells and immunodominant NLVPMVATV (NLV) peptide from HCMV pp65 protein. Interestingly, public vs private TCR expression was associated with distinct clonal expansion signatures in response to recall stimulus. This implied that besides possible differences in their generation and selection in an immune response, public and private T cells may respond differently to pharmacoimmunomodulation. Furthermore, a third clonal expansion profile was observed upon CD3 copotentiation of T-cell clones from HLA-A2(−) donors and 1 HLA-A2(+) presumed-uninfected donor, where NLV was of low intrinsic potency. We conclude that human T-cell copotentiation can increase the expansion of different classes of T-cell clones responding to recall antigens of different strengths, and this may be exploitable for therapeutic development against chronic, persistent infections such as HCMV.


2020 ◽  
Vol 17 (6) ◽  
pp. 600-612 ◽  
Author(s):  
Ling Wu ◽  
Qianru Wei ◽  
Joanna Brzostek ◽  
Nicholas R. J. Gascoigne

Author(s):  
Alaleh Rezalotfi ◽  
Lea Fritz ◽  
Reinhold Förster ◽  
Berislav Bošnjak

Adaptive T cell immunotherapy holds great promise for the successful treatment of leukemia as well as other types of cancers. More recently, it was also shown to be an effective treatment option for chronic virus infections in immunosuppressed patients. Autologous or allogeneic T cells used for immunotherapy are usually genetically modified to express novel T cell or chimeric antigen receptors. The production of such cells was significantly simplified with the CRISPR/Cas system allowing deletion or insertion of novel genes at specific locations within the genome. In this review, we describe recent methodological breakthroughs important for the conduction of these genetic modifications, summarize crucial points to be considered when conducting such experiments, and highlight the potential pitfalls of these approaches.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5949-5949
Author(s):  
Liora M. Schultz ◽  
Debra K Czerwinski ◽  
Aihua Fu ◽  
Shoshana Levy ◽  
Ronald Levy

Abstract The processes of ex vivo transduction of T cells to express chimeric antigen receptors (CARs) and of CAR+ T cell expansion influence the phenotype, function and ultimate fate of the final CAR+T cell product infused into patients. CAR constructs, despite expression of endogenous activation signals, require exogenous T cell activation during CAR transduction to allow optimal lenti-viral or retroviral-mediated integration of the CAR gene of interest into T cells. Clinical CAR therapy trials utilize anti-CD3 antibody-mediated activation or combined CD3 and CD28 stimulation using CD3, CD28 specific magnetic beads. We introduce novel magnetic nanoparticle beads generated from iron oxide nanoparticles conjugated to streptavidin and bound to biotinylated T cell activating antibodies for the purpose of CAR transduction. The small size of these nanobeads confers the advantage of decreased steric hindrance and enhanced capability of bead surface antibodies to access T cell surface antigen for binding and stimulation. We achieve efficient CAR transduction using anti-CD3 nanobead-mediated T cell stimulation and demonstrate CD19 specific CAR-mediated cytotoxicity of CD19+ tumor using an annexin V and 7AAD cytotoxicity assay. Evaluation of T cell phenotype following anti-CD3 nanobead-mediated T cell activation demonstrates preferential activation of naïve T cells as compared to central and effector memory cells. Addition of anti-CD28 costimulation is not necessary to achieving or inhibiting this preferential naïve T cell activation. Naïve T cells exhibit greater replicative capacity and anti-tumor function as compared to both effector and central memory T cells for adoptive transfer. We anticipate that preferential generation of naïve T cell derived CAR+ T cells achieved by introducing anti-CD3 nanobead stimulation can further improve the outcomes of clinical trials using CAR therapy. Disclosures Fu: NVIGEN Inc.: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2170-2170 ◽  
Author(s):  
Esther Drent ◽  
Maria Themeli ◽  
Renée Poels ◽  
Niels W.C.J. van de Donk ◽  
Henk M. Lokhorst ◽  
...  

Abstract Chimeric Antigen Receptors (CARs) are engineered transmembrane proteins consisting of an antibody (ab)-derived antigen recognition domain linked to intracellular T cell signaling domains. Cytotoxic T cells endowed with tumor-reactive CARs are highly promising tools for immunotherapy of cancer. There are however only a few truly tumor specific molecules that can be targeted by CARs, a drawback for the broad application of CAR T cell therapy. Indeed, when we recently aimed at targeting CD38high multiple myeloma (MM) with T cells transduced with high affinity CD38CARs, we observed that they not only lysed the CD38high MM cells but also CD38+ normal hematopoietic cells, pointing towards potential safety issues of such tumor-associated, but not entirely tumor-specific CARs. Therefore, using CD38 as a model for antigen we now tested whether it would be possible to reduce the on target, off-tumor effects of such CARs by optimizing their target cell affinity. To this end, we generated a new panel of CD38 abs through the "light chain exchange" method, in which heavy chains of two high affinity CD38 abs were combined with 176 different germ line light chains. This approach revealed around 100 new abs, which displayed 10- >1000 fold lower affinity to CD38 as compared to the parental abs. After categorizing them in three classes based on CD38 binding affinity, we used 8 abs from each class to generate 24 different CD38-CAR constructs. Testing the cytotoxic activity of T cells transduced with these CD38-CARs against CD38++ MM cell lines, primary MM cells and CD38+ normal hematopoietic cells in vitro and in vivo demonstrated that CD38-CAR T cells with ca. 1000 fold lower affinity to CD38 could still effectively lyse CD38++ MM cells while there was little or no cytotoxicity against CD38+ healthy hematopoietic cells. The results of this study reveal that it is possible to reduce the on-target off-tumor effects of CARs by optimizing their affinity. Thus, tailored affinity of the ab binding domain may open up new roads for CAR therapy. Disclosures van de Donk: Janssen: Research Funding; Celgene: Research Funding; BMS: Research Funding; Amgen: Research Funding. Lokhorst:Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Genmab: Research Funding. Mutis:Celgene: Research Funding; Genmab: Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A114-A114
Author(s):  
Amorette Barber

BackgroundAdoptive transfer of T cells is a promising anti-tumor therapy for many cancers. To enhance tumor recognition by T cells, chimeric antigen receptors (CAR) consisting of signaling domains fused to receptors that recognize tumor antigens can be expressed in T cells. One receptor that is a prospective target for a new chimeric antigen receptor is PD1 because the ligands for the PD1 receptor are expressed on many cancer types. Therefore, we developed a murine chimeric PD1 receptor (chPD1) consisting of the PD1 receptor extracellular domain and the activation domain of CD3 zeta. In addition, current chimeric antigen receptor therapies utilize various costimulatory domains to enhance anti-tumor efficacy. Therefore, we also compared the inclusion of CD28, Dap10, 4-1BB, GITR, ICOS, or OX40 costimulatory domains in the chPD1 receptor to determine which costimulatory domain induced optimal anti-tumor immunity.MethodsTo determine if this novel CAR could potentially target a wide variety of tumors, the anti-tumor efficacy of chPD1 T cells against murine lymphoma, melanoma, kidney, pancreatic, liver, colon, breast, ovarian, prostate, and bladder cancer cell lines was measured.ResultsOf the eighteen cell lines tested, all expressed PD1 ligands on their cell surface, making them potential targets for chPD1 T cells. Regardless of the costimulatory domain in the CAR, all of the chPD1 T cells induced similar levels of T cell proliferation and tumor cell lysis. However, differences were observed in the cytokine secretion profiles depending on which costimulatory receptor was included in the CAR. While most of the chPD1 T cell receptor combinations secreted both pro-inflammatory (IFNγ, TNFα, IL-2, GM-CSF, IL-17, and IL-21) and anti-inflammatory cytokines (IL-10), chPD1 T cells containing a Dap10 costimulatory domain secreted high levels of proinflammatory cytokines but did not secrete a significant amount of anti-inflammatory cytokines. Furthermore, T cells expressing chPD1 receptors with a Dap10 domain also had the strongest anti-tumor efficacy in vivo. ChPD1 T cells did not survive for longer than 14 days in vivo, however treatment with chPD1 T cells induced long-lived protective host-anti-tumor immune responses in tumor-bearing mice.ConclusionsTherefore, adoptive transfer of chPD1 T cells could be a novel therapeutic strategy to treat multiple types of cancer and inclusion of the Dap10 costimulatory domain in chimeric antigen receptors may induce a preferential cytokine profile for anti-tumor therapies.Ethics ApprovalThe study was approved by Longwood University’s IACUC.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2406-2406
Author(s):  
Giorgia Zanetti ◽  
Giuseppina Astone ◽  
Luca Cappelli ◽  
William Chiu ◽  
Maria Teresa Cacciapuoti ◽  
...  

Abstract Introduction: Immunotherapy is a promising therapeutic intervention for cancer treatment. Activation of the immune system via checkpoint blockade has been shown to produce antitumor responses in patients with both solid and hematological tumors. However, many patients do not respond to checkpoint inhibitors, and additional therapies are needed to treat these patients. Testing immunotherapies requires a functional human immune system; thus, it is difficult to evaluate their effectiveness using conventional experimental models. For this reason, establishing in vivo models that closely reproduce not only human tumors, but also their interactions with the human immune system, has become mandatory. Methods: We developed a humanized mouse model and combined it with a patient-derived tumor xenograft (PDTX). Humanized mice (HuMice) were generated by transplantation of cord blood or mobilized peripheral blood CD34+ hematopoietic stem and progenitor cells into preconditioned immunodeficient mice. We compared human engraftment in 3 different mouse strains: NSG (NOD.Cg-Prkdc scidIl2rg tm1Wjl/SzJ), NSGS (NOD.Cg-Prkdc scidIl2rg tm1Wjl Tg(CMV-IL3,CSF2,KITLG)1Eav/MloySzJ) and NBSGW (NOD.Cg-Kit W-41J Tyr + Prkdc scid Il2rg tm1Wjl/ThomJ). Immune cell profiling and distribution was performed using flow cytometry and immunohistochemistry. The B cell receptor (BCR) repertoire was evaluated using an RNA-based NGS assay. To evaluate the maturation and functionality of T cells developing in HuMice we performed proliferation, degranulation and intracellular cytokine staining. Results: Two months after CD34+ cell transplantation, we observed high levels of human hematopoietic chimerism in all the 3 strains. NSGS mice supported high-level chimerism as early as 1 month after transplantation, with more than 25% of human CD45+ cells in the blood. In all mice the majority of human circulating leukocytes were CD19+ B cells. An early appearance of CD3+ human T cells was detected in NSGS mice as compared to the other strains. Notably, the T cell expansion correlated with a decrease in relative B cell abundance while the myeloid cell contribution to the graft remained steady. We documented the differentiation of CD4+ and CD8+ human T cells at a 2:1 ratio. The characterization of the T cell subsets revealed that the majority was represented by CD45RA-CCR7- effector memory cells in both the spleen and the blood of HuMice. Nevertheless, recipient mice did not exhibit overt signs of graft-versus-host disease. We also evaluated the cytotoxic potential of T cells isolated from the spleen of HuMice: ex vivo peptide antigen (i.e. EBV) presentation let to generation of effective and specific cytotoxic T-cells. After assessing a functional human immune system reconstitution in HuMice, we challenged them in vivo with low-passage tumor fragments from a diffuse large B cell lymphoma (DLBCL) PDTX. All tumor implants were successfully engrafted in both HuMice and non-humanized controls. Remarkably, all the 3 HuMice strains showed a significant reduction in the tumor volume and/or eradication compared to matched non-humanized controls. Flow cytometry analysis of the peripheral blood of humanized PDTX revealed that the tumor engraftment elicited a significant expansion of CD3+ T cells and cytotoxic CD8+ lymphocytes. Moreover, tumors developing in HuMice exhibited intermediate to high levels of tumor infiltrating T lymphocytes commingling with the neoplastic B cells, as determined by immunohistochemistry. Large areas of necrosis were often observed in PDTX of HuMice. Infiltrating CD3+ cells were TIGIT, PD-1 and Lag-3 positive, and did not efficiently proliferate ex vivo: all features consistent with an exhaustion phenotype. PDTX of HuMice often displayed larger areas of necrosis. Conclusions: Collectively, our data demonstrate that a robust reconstitution can be achieved in different strains of immunocompromised mice and that HuMice elicit effective anti-lymphoma responses. PDTX HuMice represent a powerful platform to study host-tumor interactions, and to test novel immune-based strategies (CAR-T, bifunctional Abs) and new pharmacological approaches to counteract T-cell exhaustion. Figure 1 Figure 1. Disclosures Scandura: Abbvie: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Constellation: Research Funding; MPN-RF (Foundation): Research Funding; CR&T (Foudation): Research Funding; European Leukemia net: Honoraria, Other: travel fees . Roth: Janssen: Consultancy; Merck: Consultancy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Cody D. Moorman ◽  
Sue J. Sohn ◽  
Hyewon Phee

Autoimmune diseases affect roughly 5-10% of the total population, with women affected more than men. The standard treatment for autoimmune or autoinflammatory diseases had long been immunosuppressive agents until the advent of immunomodulatory biologic drugs, which aimed at blocking inflammatory mediators, including proinflammatory cytokines. At the frontier of these biologic drugs are TNF-α blockers. These therapies inhibit the proinflammatory action of TNF-α in common autoimmune diseases such as rheumatoid arthritis, psoriasis, ulcerative colitis, and Crohn’s disease. TNF-α blockade quickly became the “standard of care” for these autoimmune diseases due to their effectiveness in controlling disease and decreasing patient’s adverse risk profiles compared to broad-spectrum immunosuppressive agents. However, anti-TNF-α therapies have limitations, including known adverse safety risk, loss of therapeutic efficacy due to drug resistance, and lack of efficacy in numerous autoimmune diseases, including multiple sclerosis. The next wave of truly transformative therapeutics should aspire to provide a cure by selectively suppressing pathogenic autoantigen-specific immune responses while leaving the rest of the immune system intact to control infectious diseases and malignancies. In this review, we will focus on three main areas of active research in immune tolerance. First, tolerogenic vaccines aiming at robust, lasting autoantigen-specific immune tolerance. Second, T cell therapies using Tregs (either polyclonal, antigen-specific, or genetically engineered to express chimeric antigen receptors) to establish active dominant immune tolerance or T cells (engineered to express chimeric antigen receptors) to delete pathogenic immune cells. Third, IL-2 therapies aiming at expanding immunosuppressive regulatory T cells in vivo.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 5676-5676
Author(s):  
Yasufumi Kawasaki ◽  
Kazuya Sato ◽  
Hirofumi Nakano ◽  
Kiyomi Mashima ◽  
Daisuke Minakata ◽  
...  

Abstract Background After hematopoietic stem cell transplantation, donor T-cells home to secondary lymphoid organs and recognize alloantigens within MHC molecules presented by host APCs. Following activation, donor T-cells acquire effector functions and then migrate into host organs along the chemokine gradients. Animal models targeting chemokine signals for prevention or treatment of GVHD have shown promising results; however, there have been significant inconsistencies among studies probably due to differences in species and conditioning regimens. The aim of this study is to evaluate the role of chemokines and their receptors, CCR5 (receptor of CCL3-5) and CXCR3 (receptor of CXCL9-10), in human T-cell homing and the development of GVHD using xenogeneic GVHD mouse model. Methods NOG mice received 250cGy of total body irradiation (TBI) if not otherwise specified, and were subsequently injected intravenously with human pan T-cells. All mice developed severe GVHD and died within 2 weeks, while the mice that received TBI only survived without any symptoms of GVHD. Peripheral blood was collected from mice at a certain interval for chemokine measurement. To assess the expression of chemokine receptors and genes associated with T-cell homing, cells were harvested from GVHD target organs of mice at day 9. For CCR5 blockage, mice were treated with 31 mg/kg maraviroc once daily by oral gavage after transplantation. Results Extensive infiltration of human T-cells and tissue destruction were observed in lungs and liver, but less severely in colon of GVHD mice. Consistent with this, quantitative real-time PCR analysis for five chemokine-related genes detected up-regulation of murine CXCL9 and CXCL10 in lungs, CCL4 in lungs and liver, but no up-regulation in colon. Similarly, the multiplex analysis of nine chemokines in plasma showed a marked increase in murine CCL4, CXCL9, and CXCL10 in GVHD mice. These observations suggest that the increased expression of CCL4, CXCL9, and CXCL10 on individual organs and following their systemic release play a critical role in the homing of allogeneic T-cells. Quantitative real-time PCR analysis of 84 genes associated with chemokines and chemokine receptors in human T-cells obtained from GVHD target organs revealed down-regulation of 36 genes, most of which are critical for T-cell homing into lymph nodes, such as CCL21 (-6.73-fold) and its receptor, CCR7 (-51.6-fold), and up-regulation of 16 genes such as CCL3 (225.5-fold), CCL4 (25.2-fold), CCR1 (11.4-fold), CCR5 (3.94-fold), and CXCL10 (2.88-fold). Focusing on chemokine receptors on human T-cells, flow cytometric analysis showed significantly higher expression of CCR5 on CD4+ and CD8+ T-cells, and CXCR3 on CD4+ T-cells in GVHD mice, whereas CXCR3 on CD8+ T-cells was strongly expressed even in resting state. Tissue damages were less apparent in GVHD mice that received human T-cells only compared with irradiated GVHD mice. Consistent with this, not only a total number but also the proliferation rate of human T-cells was decreased in non-irradiated GVHD mice. Also, non-irradiated GVHD mice showed significantly decreased plasma CCL4 and CXCL10 levels in plasma, and lower expression of CCR5 on CD4+ and CD8+ T-cells, and CXCR3 on CD4+ T-cells. The same was observed, to a significantly greater extent, in MHC class I/II deficient mice, suggesting that recognition of host MHC molecules by T-cells are critical for both host and donor chemokine signals. Taken together, TBI promotes host chemokine secretion and chemokine receptor expression on donor T-cells, leading to faster recruitment of donor T-cells into host organs and their proliferation. Contrary to the previous reports, CCR5 inhibitor treatment failed to attenuate GVHD and to improve the survival of mice. Although none of chemokine ligands but CCL4 was up-regulated on the liver, the number of infiltrated T-cells and tissue destruction were almost equivalent compared to the control. These observations indicate that compensatory chemokine pathways involving alternative receptors for CCL3-5, such as CCR1 and CCR2 on effector T-cells may overcome CCR5 blockage. Conclusion This study firstly provides a comprehensive picture of human T-cell homing through CCR5 and CXCR3 signaling in xenogeneic GVHD models. Our data supports the development of novel preventive and therapeutic strategies targeting chemokine signaling for GVHD. Disclosures Fujiwara: Shire: Consultancy; Pfizer: Consultancy; Chugai: Consultancy; Kirin: Consultancy; Kyowa-Hakko: Consultancy; Astellas: Consultancy. Ohmine:Kyowa Hakko Kirin: Speakers Bureau; Takara Bio: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Takeda Pharmaceutical: Speakers Bureau; Celgene Corporation: Speakers Bureau; Chugai Pharmaceutical: Speakers Bureau; Alexion Pharmaceuticals: Speakers Bureau; Ono Pharmaceutical: Consultancy. Muroi:Japanese Red Cross Society: Speakers Bureau; Dickinson and Company: Speakers Bureau; Becton: Speakers Bureau; JCR: Speakers Bureau. Kanda:Taisho-Toyama: Research Funding; Ono: Consultancy, Honoraria, Research Funding; Asahi-Kasei: Research Funding; Takeda: Consultancy, Honoraria, Research Funding; Sanofi: Research Funding; Tanabe-Mitsubishi: Research Funding; CSL Behring: Research Funding; Dainippon-Sumitomo: Consultancy, Honoraria, Research Funding; Shionogi: Consultancy, Honoraria, Research Funding; Novartis: Research Funding; Kyowa-Hakko Kirin: Consultancy, Honoraria, Research Funding; Astellas: Consultancy, Honoraria, Research Funding; Eisai: Consultancy, Honoraria, Research Funding; Otsuka: Research Funding; MSD: Research Funding; Chugai: Consultancy, Honoraria, Research Funding; Taiho: Research Funding; Nippon-Shinyaku: Research Funding; Pfizer: Research Funding; Bristol-Myers Squibb: Consultancy, Honoraria; Celgene: Consultancy, Honoraria; Mochida: Consultancy, Honoraria; Alexion: Consultancy, Honoraria; Takara-bio: Consultancy, Honoraria.


Sign in / Sign up

Export Citation Format

Share Document