Spliceosomal Gene LUC7L2 Mutation Causes Missplicing and Alteration Of Gene Expression In Myeloid Neoplasms

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 470-470
Author(s):  
Naoko Hosono ◽  
Hideki Makishima ◽  
Bartlomiej Przychodzen ◽  
Jarnail Singh ◽  
Richard A Padgett ◽  
...  

While deletion of the long arm of chromosome 7 (del(7q)) along with monosomy 7 (-7) are common in myeloid neoplasms and especially MDS, their associated pathogenetic consequences and the genes responsible for the clinico-morphologic phenotypes remain unknown. To characterize the molecular defects resultant from del(7q), we applied a combined analysis of SNP-array karyotyping, whole exome NGS, targeted deep NGS and deep whole RNA NGS to facilitate identification of somatic mutations, loss of heterozygosity (LOH) and haploinsufficiency. First, using a cohort of 1595 patients, we precisely defined 3 commonly deleted regions in 7q22, 7q34, and 7q35-36. To identify genes involved in the pathogenesis of del(7q), we applied whole exome NGS to 428 patients with MDS and related conditions, including 72 cases of -7/del(7q) or UPD7. We found that both recurrent deletions with haploinsufficient expression and somatic nonsense/frameshift mutations were present in the genes CUX1 (7q22), LUC7L2 (7q34) and EZH2 (7q36), located on 7q. For this project we focused our study on the LUC7L2 gene encoding a spliceosomal protein that interacts with U1 snRNP to recognize 5’ splice sites. This function is in contrast to other spliceosomal genes mutated in MDS, such as SF3B1, U2AF1, SRSF2 and SF3A1that interact with the U2 snRNP complex and the 3’ splice site. Initially, we found 8 cases of LUC7L2 mutation including 2 cases of hemizygous and 1 case of homozygous mutations; all LUC7L2 mutations result in premature stop codons. The concomitant mutational spectrum in LUC7L2 mutant cases differed from those with EZH2 or CUX1 mutations. For example, TP53 and TET2 are mostly mutually exclusive with LUC7L2 mutations. While LUC7L2 mutant cases were low grade-MDS (RCUD or RCMD) or CMML, the survival impact of LUC7L2 mutation was similar to that seen in -7/del(7q) (LUC7L2; HR=2.36). Most of the mutations are heterozygous (diploid chr7) or homozygous (UPD7q). However, in addition to a few hemizygous mutations, wild type expression of LUC7L2 is haploinsufficient in del(7q). In total we found 117 cases (9%) with del(7q) and resultant decreased expression of LUC7L2, showing comparably poor survival as in the mutant cases (HR=1.99). Next, we hypothesized that dysfunction of LUC7L2 causes splicing defects (missplicing) in specific genes involved in leukemogenesis. Using deep RNA NGS we compared splicing patterns of 201,837 exons between the cases with deficient function of LUC7L2 (mutation/low-expression; n=11) versus wild-type (n=11), and identified concordant alternative splicing patterns in 44 genes (increased exon skipping in 27 genes; increased exon retention in 17 genes). For example, we found abnormal splicing of genes involved in functionally important pathways including the RAS pathway (NF1) and the TGF-β pathway (SMAD5). In cases of mutation/low-expression of LUC7L2, as a result of increased skipping of NF1 exon 31(NM_001042492), the type I isoform of NF1 predominates as compared to wild type (types I/II ratio; 0.76 vs. 0.45, p<.01, respectively). Missplicing also occurred in SMAD5 exon 2 (5’UTR site) resulting in a significantly lower SMAD5 expression. In agreement with RNA sequencing results, lentivirus-mediated shRNA knockdown of LUC7L2 in K562 cells resulted in the concordant effects on NF1 type 1 isoform and SMAD5 exon 2 skipping. Similar splicing patterns were observed in MDS cases with -7/del(7q), involving the LUC7L2gene. In conclusion, novel somatic mutations of LUC7L2 suggest that it could be a candidate gene associated with the poor prognosis of -7/del(7q) and UPD7. Loss of function or low expression of LUC7L2 results in distinctly altered splicing patterns involving genes associated with proliferation or leukemogenesis. Disclosures: Makishima: AA & MDS international foundation: Research Funding; Scott Hamilton CARES grant: Research Funding.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2762-2762
Author(s):  
Chantana Polprasert ◽  
Hideki Makishima ◽  
Bartlomiej P Przychodzen ◽  
Naoko Hosono ◽  
Wenyi Shen ◽  
...  

Abstract Clinical and pathomorphologic diversity in MDS is a reflection of heterogeneity of molecular lesions. Somatic mutations and chromosomal deletions/amplifications affect various pathways in a convergent and divergent fashion, generate phenocopy and can occur in a variety of combinations. Recent technological advances, including high density arrays and the new generation sequencing (NGS) led to the discovery of novel pathway mutations or gene families affected by somatic defects, e.g., cohesin or spliceosomal mutations. We have performed whole exome NGS of paired (tumor/germ line) samples in 222 patients with myeloid neoplasms from the Cleveland Clinic and University of Tokyo. Clinical parameters were studied including age, gender, overall survival (OS), bone marrow blast count, and metaphase cytogenetics. Additionally, we also used in our analysis data sets from 197 AML included in the Cancer Genome Atlas (TCGA). We found 1.4% (6/419) of non-canonical somatic mutations of KIF2Bwhich is a member of kinesin13 family located on the long arm of chromosome 17; 3 cases from our cohort (p.V32M (c.G94A), p.T113M (c.C338T), p.R163C (c.C487T)) and 3 cases from TCGA database (p.T47M (c.C140T), p.T310M (c.C929T), p.H551N (c.C1651A)). By analyzing clonal architecture and intra-tumor heterogeneity in 2 cases (RCMD and RAEB) by targeted deep sequencing, allelic frequencies of KIF2B mutations were more than 45% and larger than for any other concomitant mutations, suggesting that KIF2B mutations might consequently constitute ancestral events followed by subclonal acquisitions of the other mutations. Of note is that 6 non-sense mutations were also reported in lung cancer. Based on SNP-array mapping of chromosomal abnormalities, deletions of 17q involving the KIF2B locus (17q22) was present about 3% (6/215) of myeloid neoplasm. KIF2B defects were frequently detected in higher-risk MDS and AML phenotypes (9%). KIF2B performed an important role in regulation of kinetochore-microtubule attachment. Previous studies showed that the velocity of chromosomes’ movement in KIF2B-deficient cells is reduced 80% comparing to control and fail to perform cytokinesis. In our series, 56% of myeloid neoplasms with KI2B defects had complex cytogenetics and 67% cases of them were also UPD, suggesting that KIF2B defects might lead to inducing abnormal chromosomal movements and segregations. We then, expanded our study to the whole kinesin gene family: 17 somatic mutations and 57 deletions were identified in KIF1A (n=6), KIF23 (n=1), KIF26A (n=1), KIF27 (n=7), KIF1C (n=9), KIF21B (n=2), KIF13A (n=10), KIF14 (n=2), KIF17 (n=15), KIF25 (n=1), KIF3C (n=8), KIF6 (n=2) and CENPE (n=10). All mutations were heterozygous and mutually exclusive. By survival analysis of such mutated cases, a tendency towards worse prognosis was observed (HR; 1.72, 95%CI 0.86-3.37). Analysis of concomitant mutations associated with whole kinesin family mutations or deletions showed that most frequently affected genes are TET2 (n=14), DNMT3A (n=8), IDH1/2 (n=8) and MLL (n=5), all involved in epigenetic regulation. In conclusion, somatic mutations in kinesin family genes are found in myeloid malignancies and might be responsible for another pathogenesis of the disease. KIF2B is most frequently found in myeloid malignancies and associated with aggressive type of MDS. Since knockout mice of multiple kinesin family genes (KIF5A, KIF16B and EG5) were lethal in embryo and all the mutations occur in a heterozygous configuration, it is likely synthetic lethal approach might create therapeutic window between defective malignant cells and healthy controls. Kinesin family of motor proteins may be an emerging novel therapeutic target. In fact some kinesins have been already successfully targeted in solid tumors. Disclosures: Polprasert: MDS foundation: Research Funding. Makishima:AA & MDS international foundation: Research Funding; Scott Hamilton CARES grant: Research Funding. Maciejewski:NIH: Research Funding; Aplastic anemia&MDS International Foundation: Research Funding.


Blood ◽  
2012 ◽  
Vol 119 (14) ◽  
pp. 3203-3210 ◽  
Author(s):  
Hideki Makishima ◽  
Valeria Visconte ◽  
Hirotoshi Sakaguchi ◽  
Anna M. Jankowska ◽  
Sarah Abu Kar ◽  
...  

Abstract Myelodysplastic syndromes (MDSs) are chronic and often progressive myeloid neoplasms associated with remarkable heterogeneity in the histomorphology and clinical course. Various somatic mutations are involved in the pathogenesis of MDS. Recently, mutations in a gene encoding a spliceosomal protein, SF3B1, were discovered in a distinct form of MDS with ring sideroblasts. Whole exome sequencing of 15 patients with myeloid neoplasms was performed, and somatic mutations in spliceosomal genes were identified. Sanger sequencing of 310 patients was performed to assess phenotype/genotype associations. To determine the functional effect of spliceosomal mutations, we evaluated pre-mRNA splicing profiles by RNA deep sequencing. We identified additional somatic mutations in spliceosomal genes, including SF3B1, U2AF1, and SRSF2. These mutations alter pre-mRNA splicing patterns. SF3B1 mutations are prevalent in low-risk MDS with ring sideroblasts, whereas U2AF1 and SRSF2 mutations are frequent in chronic myelomonocytic leukemia and advanced forms of MDS. SF3B1 mutations are associated with a favorable prognosis, whereas U2AF1 and SRSF2 mutations are predictive for shorter survival. Mutations affecting spliceosomal genes that result in defective splicing are a new leukemogenic pathway. Spliceosomal genes are probably tumor suppressors, and their mutations may constitute diagnostic biomarkers that could potentially serve as therapeutic targets.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 218-218
Author(s):  
Jil Rotterdam ◽  
Margot Thiaucourt ◽  
Juliana Schwaab ◽  
Andreas Reiter ◽  
Sebastian Kreil ◽  
...  

Abstract Background: In general, patients with hematological diseases are predisposed to develop infections. Severe COVID-19 infection associated with high mortality is more likely in these patient cohorts compared to the general population. Due to immune defects related to the primary disease and/or to immunosuppressive treatment regimes, vaccination efficacy may be reduced in patients with hematological diseases. So far, data on this area are limited. Aim: To evaluate vaccination-related antibody response to BNT162b2, mRNA-1273, and ChADOx1 in patients with hematological disorders. Patients and methods: In this interim analysis of a prospective, observational single-center study, we report antibody levels at least 2 weeks after COVID-19 vaccination. A FDA/CE approved electrochemiluminescent assay (ECLIA) (Elecsys®, Roche, Mannheim, Germany) was used to quantify antibodies, pan Ig (including IgG) against the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. The assay has a measurement range of 0.4 to 250 U/mL, with a concentration ≥0.8 U/ml considered as positive. Data were analyzed for patients without detection of anti-N (nucleocapsid) SARS-CoV-2 antibody (i.e., without having passed SARS-CoV-2 infection). All tests were performed according to the manufacturer's instructions in an accredited laboratory at the University Hospital Mannheim. Results: Between February 2021 and July 2021, a total of 175 patients with hematological diseases were included in this study. The median age was 66 years (range 21-90 years), and 81 (46.3%) were female. The antibody levels were measured at least 14 days (median, 58 days) after the 2 nd vaccination. The patients were vaccinated with BNT162b2 (BioNTech, n=134), mRNA-1273 (Moderna, n=19), ChADOx1 (AstraZeneca, n=12), or got the first vaccination with BNT162b2 and the second with ChADOx1 (n=10). Overall, 145/175 (82.9%) were diagnosed with a malignant hematological disease (myeloid neoplasms, n=108; lymphoid neoplasms, n=37) and 30/175 with a non-malignant hematological disease (autoimmune disease, n=24; benign, n=6). 124 patients (70.1%) were on active therapy, and 51 patients (29.1%) were previously treated or treatment naïve. Correlation to specific therapies is ongoing and will be presented. In general, vaccination-related antibody response was positive (≥0.8 U/mL) in 148/175 (84.6%) patients with a median level of 208.6 U/mL (range 0.8-250.00) and negative (&lt;0.8 U/mL) in 27/175 (15.4%) patients. The distribution of the negative cohort regarding the disease subgroups were as followed: myeloid neoplasms 7/27 (25.9%), lymphoid neoplasms 16/27 (59.3%), non-malignant hematological disease 4/27 (14.8%). Within the negative cohort, 21/27 (77.8%) were treated on active therapy, 6/27 (22.2%) were previously treated or treatment naïve. In myeloid neoplasms, patients with classical myeloproliferative neoplasm (MPN) had the highest negative result for antibodies with 4/7 (57.1%) followed by myelodysplastic syndrome (MDS) 2/7 (28.6%). Interestingly, all patients with chronic myeloid leukemia (CML) had a measurable immune response. In lymphoid neoplasms, patients with low-grade non-hodgkin lymphoma (NHL) (predominately chronic lymphocytic leukemia, CLL) had the highest negative antibody result 13/16 (81.3%) followed by high-grade NHL 4/8 (50%; predominately diffuse large b-cell lymphoma, DLBCL). In non-malignant hematological diseases, only patients with autoimmune diseases had a negative result. Conclusion: A remarkable group of patients with hematological disease were measured with no or low immune response after 2 nd COVID-vaccination, especially those with low-grade NHL, MDS and autoimmune disease. It seems that the percentage of patients with MPN and low response is less critical. No problems appeared in CML patients. Further explorations are needed with focus on potential risk of COVID infections despite full vaccination: The potential of 3 rd booster vaccination should be explored within clinical trials. Disclosures Reiter: AOP Orphan Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: travel support; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel expenses, Research Funding; Celgene/BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: travel support; Incyte: Membership on an entity's Board of Directors or advisory committees, Other: Travel expenses; Blueprint Medicines: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel expenses; Abbvie: Membership on an entity's Board of Directors or advisory committees; Deciphera: Membership on an entity's Board of Directors or advisory committees, Other: Travel expenses. Kreil: Novartis: Research Funding. Hofmann: Amgen: Honoraria; BMS: Honoraria; Novartis: Honoraria. Jawhar: Takeda: Honoraria, Other: Travel support; Blueprint Medicines: Honoraria; Stemline: Consultancy, Honoraria; Celgene: Other: Travel support; Novartis: Consultancy, Honoraria, Other: Travel support, Speakers Bureau. Saussele: Roche: Honoraria; Pfizer: Honoraria; Incyte: Honoraria, Research Funding; BMS: Honoraria, Research Funding; Novartis: Honoraria, Research Funding.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1698-1698 ◽  
Author(s):  
Holleh D Husseinzadeh ◽  
Edward P Evans ◽  
Kenichi Yoshida ◽  
Hideki Makishima ◽  
Andres Jerez ◽  
...  

Abstract Abstract 1698 Hypomethylating agents decitabine and azacitidine are standard treatments for myelodysplastic syndromes (MDS). In their use, one hopes to rectify cytopenias and prolong survival by retarding further disease progression. However, individual treatment responses vary from complete remission (CR) to complete refractoriness. In general, at least 4 cycles of therapy are administered prior to assessing response. Thus, patients may have prolonged exposure to ineffective therapy, suffering toxicities without clinical benefit, while alternative and potentially more effective treatments are delayed. Currently, there are no reliable phenotypic or mutational markers for predicting response to hypomethylating agents. Once whole exome sequencing (WES) became available for more routine analysis, we theorized that somatic mutational patterns may help identify patients who would most benefit from these drugs, thereby maximizing response rate by rational patient selection. To pursue this hypothesis, we screened a cohort of 168 patients with MDS who received either azacitidine or decitabine for the presence of somatic mutations. Only those who received sufficient therapy, i.e., completed at least 4 cycles, were selected for outcome analysis. Targeted Sanger sequencing, including a panel of up to 19 genes frequently affected by somatic mutations was performed. For a representative subset of 26 patients (this subset is expanding) of whom there were 15 responders and 11 non-responders, mutational analysis was performed by WES to select target genes for further analysis. WES utilizes paired DNA (tumor vs. CD3+ lymphocytes) to produce raw sequence reads aligned using Burrows-Wheeler Aligner (BWA). Variants are detected using the Broad Institute's Best Practice Variant Detection GATK toolkit. Median age was 68 years (range, 55–85), 50% were female, and MDS subtypes were as follows: RA/RCUD/RARS 13%, RCMD 16%, RAEB-1/2 20%, MDS/MPN & CMML-1/2 31%, and sAML 20%. Response was assessed using IWG 2006 criteria at 4 and 7 months after therapy initiation. Overall response was 48%; rate of CR (including marrow/cytogenetic CR) was 28%, any HI 20%, SD 22%, and no response 29%. The cohort was then dichotomized into “responders” and “non-responders,” with responders classified as those achieving CR or any HI. Baseline patient characteristics were similar between both groups, including average age at treatment initiation, disease subtypes, proportion of abnormal/complex karyotypes, and presence of common cytogenetic aberrations. Overall, the most frequently mutated genes include TET2/IDH1/IDH2, SRSF2, ASXL1, SF3B1, RUNX1, EZH2/EED/SUZ12, SETBP1, CBL, and PPIAF2. The highest rate of refractoriness was noted in mutants of TET2/IDH1/IDH2 (67%), SF3B1 (67%), U2AF1/2 (67%). We also identified several genes whose mutants were few but associated exclusively with refractory disease (100%), including KIT, ZRSR2, PRPF8, LUC7L2. We next applied a recursive partitioning algorithm to construct a decision tree for identifying the most pivotal mutations associated with response: we found mutant CBL and PPFIA2 to be strongly associated with response, whereas mutant U2AF1/2, SF3B1 and PRPF8 were strongly associated with refractoriness. Our final approach was to dichotomize the cohort by the presence/absence of each mutation/group of mutations, and response within mutant vs. wild type cases was compared. Among refractory cases, TET2/IDH1/IDH2 (26%) and SF3B1 (17%) were most frequently mutated; among responders, mutations in RUNX1 (19% vs. 4%]), CBL (14% vs. 0%), SRSF2 (23% vs. 9%), and SETBP1 (18% vs. 4%) were most frequent. When multiple genes were combined in “either-or” fashion, mutation in TET2, SF3B1, PRPF8, or LUCL71 was significantly associated with refractoriness (52%, p=.0287), whereas mutations of RUNX1, CBL, SRSF2, SETBP1, or PPFIA2 mutation was significantly associated with response (86%, p=.0001). Mutational patterns appear to predict response to standard hypomethylating agents. Identification of the most predictive genes could guide development of molecular maker-based selection of patients for hypomethylating agent therapy, but will require ongoing analysis and additional prospective testing for validation. Disclosures: Advani: Genzyme: Honoraria, Research Funding; Immunomedics: Research Funding. Maciejewski:NIH: Research Funding; Aplastic Anemia&MDS International Foundation: Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1697-1697 ◽  
Author(s):  
Rami S. Komrokji ◽  
Amy E. DeZern ◽  
Katrina Zell ◽  
Najla H. Al Ali ◽  
Eric Padron ◽  
...  

Abstract Introduction Somatic mutations in SF3B1 ,a gene encoding a core component of RNA splicing machinery, have been identified in patients (pts) with myelodysplastic syndrome (MDS). The SF3B1 mutation (MT) is more commonly detected in pts with ring sideroblasts (RS) morphology and is associated with favorable outcome. The pattern of response among SF3B1 mutated MDS pts to available treatment options, including erythropoiesis stimulating agents (ESA), hypomethylating agents (HMA) and lenalidomide is not known. The distinct underlying disease biology among such pts may alter response to treatment. Methods Pts treated at MDS CRC institutions with MT vs wild-type SF3B1 (WT) controls were matched 1:2. Matching criteria were age at diagnosis, year of diagnosis and International Prognostic Scoring System (IPSS) category at diagnosis. IPSS category was split into two groups (Low or Int-1 vs. Int-2 or High). Matching was performed using the R package by calculating a propensity score, which was then used to determine the two most similar WT SF3B1 patients for each SF3B1-mutated pt, without replacement. Additionally, to be included in the population, pts also had to have been treated with one of the following: ESAs, HMA, or lenalidomide. Response to treatment was evaluated by international Working Group criteria (IWG 2006) and classified as response if hematological improvement or better was achieved (HI+). Survival was calculated from date of treatment until date of death or last known follow-up, unless otherwise noted. Results: We identified 48 Pts with MT and 96 matched controls. Table 1 summarizes baseline characteristics comparing MT vs WT SF3B1 cohorts. SF3B1 MT was detected more often in association with RS, as expected. The majority of pts had lower-risk disease by IPSS and revised IPSS (IPSS-R). Pts with MT had higher platelets than controls. The most common concomitant somatic mutations observed were TET2 (30%), DNMT3A (21%), and ASXL1 (7%). Median follow-up time from diagnosis was 35 months (mo). Median overall survival (OS) from diagnosis was significantly longer for patients with SF3B1 MT (108.5 mo (68.8, NA)) than wild-type controls (28.3 mo (22.3, 36.4); p < 0.001). Patients with an SF3B1 MT had a decreased hazard of death (hazard ratio [HR]: 0.49 (95% confidence limits [95% CL]: 0.29, 0.84); p = 0.009) ESA was the first line therapy for 43 pts (88%) with MT and 55 WT Pts (56%). For ESA treated pts, 14 out 40 MT Pts responded (35%) compared to 9/56 among WT Pts (16%), p 0.032. Among those treated with HMA therapy, 5 out 21 (24%) MT pts responded compared to 11/46 (24%) WT Pts (p 0.99). Finally, for Pts treated with lenalidomide 4/16 (25%) and 4/21 (19%) responded among SF3B1 MT and WT Pts respectively, p 0.7. Conclusions SF3B1 somatic mutation in MDS is commonly associated with RS, lower risk disease, and better OS. Pts with SF3B1 mutation had higher response to ESA compared WT SF3B1. No difference in response to HMA or lenalidomide was observed compared to WT patients. Response rates to lenalidomide and HMA were low in both MT patients and controls. Biologically rational therapies are needed that target this molecular disease subset. Table 1. Baseline characteristics SF3B1 MT (n=48) SF3B1 WT (n=96) P value Age median 65 67 0.6 Gender male 29 (60%) 64(67%) 0.5 Race White 44/45 (98%) 83/90 (92%) 0.34 WHO classification RA RARS RCMD RARS-T Del5 q RAEB-I RAEB-II MDS-U MDS/MPN CMML 3 24 8 4 1 3 3 2 0 0 6 9 17 2 6 10 9 3 11 9 IPSS Low Int-1 Int-2 High 29 (60%) 16 (33%) 3 (6%) 0 21 (22%) 69 (72%) 4 (4%) 2 (2%) < 0.001 IPSS-R Very low Low Intermediate High Very High 15 (31%) 26 (54%) 5 (10%) 2 (4%) 0 11 (11%) 37 (39%) 26 (27%) 18 (19%) 4 (4%) <0.001 Lab values (mean) Hgb Platelets ANC myeloblasts 9.7 274 2.63 1 9.6 108 1.92 2 0.46 <0.001 0.04 0.05 Disclosures Komrokji: Novartis: Research Funding, Speakers Bureau; Celgene: Consultancy, Research Funding; Incyte: Consultancy; Pharmacylics: Speakers Bureau. Padron:Novartis: Speakers Bureau; Incyte: Research Funding. List:Celgene Corporation: Honoraria, Research Funding. Steensma:Incyte: Consultancy; Amgen: Consultancy; Celgene: Consultancy; Onconova: Consultancy. Sekeres:Celgene Corporation: Membership on an entity's Board of Directors or advisory committees; TetraLogic: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees.


2016 ◽  
Vol 34 (4_suppl) ◽  
pp. TPS776-TPS776 ◽  
Author(s):  
Takayuki Yoshino ◽  
Hiroyuki Uetake ◽  
Katsuya Tsuchihara ◽  
Kohei Shitara ◽  
Kentaro Yamazaki ◽  
...  

TPS776 Background: Optimal combination of monoclonal antibody (anti-VEGF vs. anti-EGFR antibody) with standard chemotherapy as first-line treatment in patients (pts) with RAS (KRAS/NRAS) wild-type metastatic colorectal cancer (mCRC) remains controversial. FIRE-3 study demonstrated a significant improvement in overall survival (OS) with anti-EGFR over bevacizumab in pts with KRAS exon 2 wild type mCRC, while CALGB 80405 study did not. PARADIGM study is designed to compare panitumumab vs. bevacizumab combined with mFOLFOX6 in pts with RAS wild-type chemotherapy-naive mCRC. Methods: Eligible pts are aged 20-79 years with ECOG performance status (PS) 0-1 and histologically/cytologically confirmed RAS wild-type mCRC. 800 pts will be randomly assigned in a 1:1 ratio to mFOLFOX6 plus panitumumab or bevacizumab, and stratified according to institution, age (20-64 vs. 65-79 years), and liver metastases (present vs. absent). Each treatment regimen includes oxaliplatin 85 mg/m2, l-leucovorin 200 mg/m2, 5-fluorouracil (5-FU) iv 400 mg/m2 at day 1, 5-FU civ 2400 mg/m2 at day 1-3, and either panitumumab 6 mg/kg or bevacizumab 5 mg/kg at day 1 every two weeks. The primary endpoint is the OS; the study was designed to detect the OS hazard ratio of 0.76, with a one-sided type I error of 0.025 and 80% power. Secondary efficacy endpoints include progression-free survival, response rate, duration of response, and curative resection rate. One interim analysis is planned for the OS when approximately 70% of the targeted 570 events has been observed. Exploratory endpoint is to investigate possible biomarkers including oncogenic mutations using tumor tissue and circulating tumor DNA (Study ID: NCT02394834). As of August 2015, 21 pts have been randomized and recruitment is ongoing. Clinical trial information: NCT02394795.


Author(s):  
V.G. LeBlanc ◽  
S. Chittaranjan ◽  
M. Firme ◽  
S.Y. Chan ◽  
J. Song ◽  
...  

Somatic mutations in the Capicua (CIC) gene were first identified in Type I low-grade gliomas (LGGs), which are characterized by 1p/19q co-deletions and IDH mutations. They are found at frequencies of ~50-70% in this glioma subtype, and have since been identified in ~40% of stomach adenocarcinomas (STADs) of the microsatellite instability (MSI) subtype; however, the role of these somatic mutations in malignancy has yet to be established. In Drosophila, CIC functions as a transcriptional repressor whose activity is inhibited upon activation of the mitogen-activated protein kinase (MAPK) signalling pathway. Though mammalian CIC appears to retain these functions, only three of its target genes have been established in human cells: ETV1, ETV4, and ETV5 (ETV1/4/5). To further probe CIC’s transcriptional network, we developed CIC knockout cell lines and performed transcriptomic and proteiomic analyses in these and in control cell lines expressing wild type CIC, identifying a total of 582 differentially expressed genes. We also used RNA-seq data from The Cancer Genome Atlas (TCGA) for Type I LGGs and STADs to perform additional differential expression analyses between CIC-deficient and CIC-expressing samples. Though gene-level overlap was limited between the three contexts, we found that CIC appears to regulate the expression of genes involved in cell-cell adhesion, metabolism, and developmental processes in all three contexts. These results shed light on the pathological role of CIC mutations and may help explain why these have been associated with poorer outcome within Type I LGGs.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2371-2371
Author(s):  
Hideki Makishima ◽  
Kenichi Yoshida ◽  
Michael J. Clemente ◽  
Masashi Sanada ◽  
Yasunobu Nagata ◽  
...  

Abstract Abstract 2371 PNH is a clonal stem cell disease. While nonmalignant, PNH shows certain similarities to MDS and other neoplasms affecting hematopoietic stem and progenitor cells, including persistence of an aberrant clone, clonal expansion, and phenotypic abnormalities. In a small proportion of patients, subtle chromosomal abnormalities can be found and cases of otherwise classical PNH due to microdeletions involving the PIG-A locus have been described, illustrating similarities to other malignant conditions. PIG-A gene mutations lead to defective biosynthesis of GPI anchors and are responsible for the PNH phenotype. Similarly, phenotypic features of stem cells affected by PIG-A mutations are believed to be responsible for the extrinsic growth advantage and clonal expansion in the context of immune mediated suppression of hematopoiesis. While this scenario is plausible, there are also observations suggesting that intrinsic factors may be also involved. For instance, PNH persists after successful immunosuppression, often for many years, suggesting activation of stem cell maintenance genes. Furthermore, PNH clones can also be encountered (albeit at a very low frequency) in healthy individuals, and PNH can present in a pure form without aplastic anemia. Such extrinsic factors may include additional, secondary genetic events such as somatic mutations. Supporting this theory, clonal rearrangement of chromosome 12, which leads to overexpression of the transcription factor HMGA2 gene, were found in cells with the PIG-A mutation from 2 PNH cases. Also, we recently reported 3 PNH cases with JAK2 V617F mutation, who presented with a MPN phenotype and thrombosis. We theorized that study of clonal architecture in PNH will reveal clues as to the pathogenesis of clonal evolution of the PNH stem cell. We applied next generation whole exome sequencing to detect somatic mutations in PNH cases (N=6). The subsequent validation set included 45 PNH cases. PNH and non-PNH cells were sorted using magnetic beads. DNA from both fractions was analyzed by whole exome sequencing and results of the non-PNH cells were subtracted from the results of the PNH clone. We found biallelic PIG-A mutations in 2 female cases and a single mutation in each male case. In an index female case with thrombosis, a novel somatic heterozygous mutation of NTNG1 (P24S) was detected, while the patient was negative for the JAK2 mutation. Allelic frequency with the NTNG1 mutation (53/160 sequence reads (33%)) was larger than that with a concomitant heterozygous PIG-A mutation (intron 5 splice donor site G<A) (78/333 reads (23%)). In this case, the size of the other heterozygous PIG-A mutation (G68E) was less (31/194 (16%)) than the other PNH clone. These findings suggest that there are 2 different PNH clones in one case and that the NTNG1 mutation might be acquired before PIG-A gene was mutated. Moreover, NTNG1 encodes a GPI-anchored cell membrane protein and the mutation (P24S) was located in the predicted signal peptide. All together, 3 novel mutations were discovered, including MAGEC1 (C747Y) and BRPF1 (N797S) mutations. Of note, BRPF1 mutations have been also reported in AML. Interestingly, BRPF1 encodes a component of MOZ/MORF complex, positively regulating the transcription of RUNX1. To screen pathogenic karyotypic lesions in PNH clonal expansions, we combined metaphase cytogenetics and single nucleotide polymorphism arrays. We detected 14 somatic chromosomal abnormalities in 13 out of 26 PNH cases (50%). Of note is that a microdeletion on 2q13 resulted in the loss of an apoptosis-inducing gene BCL2L11, suggesting a contribution to growth advantage. Somatic UPD lesions strongly suggest the presence of homozygous mutations, for example the SET nuclear oncogene, which is located in UPD9q32qter was observed in another PNH case. Overall, the discovery of these novel mutations, as well the previously described JAK2 mutation, indicates that the pathophysiology of PNH clonal evolution partially overlaps that of other myeloid malignancies. In sum, various novel somatic karyotypic abnormalities and mutations are frequently detected in PNH clones using technology with comprehensive and high resolution. Some of these aberrations play a similar role in the clonal evolution of myeloid malignancies. These results suggest new therapeutic strategies similar to those for other myeloid malignancies should be considered in PNH cases with addition mutations. Disclosures: Makishima: Scott Hamilton CARES Initiative: Research Funding. Maciejewski:NIH: Research Funding; Aplastic Anemia&MDS International Foundation: Research Funding.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 558-558
Author(s):  
Inées Góomez-Seguíi ◽  
Hideki Makishima ◽  
Andres Jerez ◽  
Kenichi Yoshida ◽  
Bartlomiej P Przychodzen ◽  
...  

Abstract Abstract 558 In addition to chromosomal and epigenetic abnormalities, somatic mutations constitute key pathogenic lesions in myeloid neoplasms. Individual somatic mutations or various combinations may be both valuable prognostic markers and targets for new rational therapies. Among them, RAS family genes are ubiquitous oncogenes associated with various cancers. Recurrent canonical mutations in the nucleotide binding domains in NRAS and KRAS result in constitutively activated proteins. In myeloid neoplasms, RAS mutations convey a poor prognosis and are often found in acute myeloid leukemia (AML), myelodysplastic syndromes (MDS) and, rarely, myeloproliferative neoplasms (MPN). We applied whole exome sequencing to paired germline vs. leukemia samples in 65 cases of MDS, 36 MDS/MPN and 32 sAML. We focused our study on the RAS protein superfamily of small GTPases and identified mutations in 3% and 6% of KRAS and NRAS, respectively. Most significantly, we identified somatic recurrent mutations in the F82 residue of Ras-like without CAAX1 (RIT1) gene in 2 patients with chronic myelomonocytic leukemia (CMML) and secondary AML (sAML), respectively. We confirmed the somatic nature of both mutations in sorted CD3+ cells from each patient (pt). RIT1 gene encodes a member of Ras-related GTPases, involved in the p38 MAPK and AKT signaling pathway that mediates cellular survival in response to stress. RIT1 gene amplification has been found in 26% of hepatocellular carcinoma. However, neither amplification nor mutations of this gene have been reported in myeloid malignancies. We thus focused this line of experimentation on this somatic mutation. To establish clinical associations we further studied a cohort of 322 patients with various myeloid malignancies by Sanger sequencing and detected somatic RIT1 mutations in an additional 6 (2%) cases. All mutations were located in exon 5, in the 81 and 82 residues, which encode the switch II domain of this protein, an effector region very close to the GTP-binding site G3, and which is highly conserved among species. Among the 8 mutant cases, 5 (63%) pts had CMML, resulting in a higher frequency of mutations in this subcohort of pts (5 out of 57 CMML, 9%). The other 3 mutations were found in one primary (p)AML (M5b subtype) (1 out of 58 pAML, 2%) and two high-grade MDS, one refractory anemia with excess blasts (RAEB)-2 and one sAML(RAEB-T in the FAB-classification) (2 out of 80, 2.5%). RIT1 mutations were heterozygous in all cases except for one case with trisomy 1 and duplication of the mutant allele. In the cases of WES, we estimated an allelic frequency of ∼35%, consistent with the presence of a heterozygous mutation in ∼70% of sample cells. Because of the large size of the clone and serial samples showing RIT1 mutation since the time of initial diagnosis, it is likely that RIT1 may be of ancestral origin. As RAS-family gene amplifications have been described in cancer, we also studied the presence of amplifications of the RIT1 locus (1q22) by SNP-A. We found 10 cases characterized by a gain involving the RIT1 region (1q21.1-q44): 4 (40%) cases had a diagnosis of CMML, 4 (40%) had myelofibrosis, whereas the remaining patients had MDS (one RAEB-1 and a RA). Quantitative RT-PCR showed RIT1 overexpression in mutants and in patients with 1q amplification (median normalized relative ratio 0,51 and 0,40, respectively) compared to patients with wild type RIT1 and no amplification in 1q (median normalized relative ratio 0,15; P=.039). We theorized that activating RIT1 mutations may constitute a suitable therapeutic target. Because AKT inhibitors can block AKT phosphorylation and therefore reverse the antiapoptotic effect of mutant RIT1, we tested whether AKT inhibitor V (Triciribine) can selectively abrogate the growth of primary cells with RIT1 mutation. In in vitro suspension cultures, a 65% of reduction proliferation was observed with significant effects even at 0.1μM concentrations. In sum, somatic recurrent RIT1 mutations are novel lesions involved in the molecular pathogenesis of myeloid cancers, presumably early in the development of the disease. Moreover, amplifications of RIT1 also lead to overexpression of this Ras-like GTP-ase. Specifically, these abnormalities appear to be more frequent in patients with CMML, but also can be found in other types of MDS. Disclosures: Makishima: Scott Hamilton CARES Initiative: Research Funding. Maciejewski:NIH: Research Funding; Aplastic Anemia&MDS International Foundation: Research Funding.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 782-782
Author(s):  
Ayana Kon ◽  
Lee-Yung Shih ◽  
Masashi Minamino ◽  
Masashi Sanada ◽  
Yuichi Shiraishi ◽  
...  

Abstract Abstract 782 Recent genetic studies have revealed a number of novel gene mutations in myeloid malignancies, unmasking an unexpected role of deregulated histone modification and DNA methylation in both acute and chronic myeloid neoplasms. However, our knowledge about the spectrum of gene mutations in myeloid neoplasms is still incomplete. In the previous study, we analyzed 29 paired tumor-normal samples with chronic myeloid neoplasms with myelodysplastic features using whole exome sequencing (Yoshida et al., Nature 2011). Although the major discovery was frequent spliceosome mutations tightly associated with myelodysplasia phenotypes, hundreds of unreported gene mutations were also identified, among which we identified recurrent mutations involving STAG2, a core cohesin component, and also two other cohesin components, including STAG1 and PDS5B. Cohesin is a multimeric protein complex conserved across species and is composed of four core subunits, i.e., SMC1, SMC3, RAD21 and STAG proteins, together with several regulatory proteins. Forming a ring-like structure, cohesin is engaged in cohesion of sister chromatids in mitosis, post-replicative DNA repair and regulation of gene expression. To investigate a possible role of cohesin mutations in myeloid leukemogenesis, an additional 534 primary specimens of various myeloid neoplasms was examined for mutations in a total of 9 components of the cohesin and related complexes, using high-throughput sequencing. Copy number alterations in cohesin loci were also interrogated by SNP arrays. In total, 58 mutations and 19 deletions were confirmed by Sanger sequencing in 73 out of 563 primary myeloid neoplasms (13%). Mutations/deletions were found in a variety of myeloid neoplasms, including AML (22/131), CMML (15/86), MDS (26/205) and CML (8/65), with much lower mutation frequencies in MPN (2/76), largely in a mutually exclusive manner. In MDS, mutations were more frequent in RCMD and RAEB (19.5%) but rare in RA, RARS, RCMD-RS and 5q- syndrome (3.4%). Cohesin mutations were significantly associated with poor prognosis in CMML, but not in MDS cases. Cohesin mutations frequently coexisted with other common mutations in myeloid neoplasms, significantly associated with spliceosome mutations. Deep sequencing of these mutant alleles was performed in 19 cases with cohesin mutations. Majority of the cohesin mutations (16/19) existed in the major tumor populations, indicating their early origin during leukemogenesis. Next, we investigated a possible impact of mutations on cohesin functions, where 17 myeloid leukemia cell lines with or without cohesin mutations were examined for expression of each cohesin component and their chromatin-bound fractions. Interestingly, the chromatin-bound fraction of one or more components of cohesin was substantially reduced in cell lines having mutated or defective cohesin components, suggesting substantial loss of cohesin-bound sites on chromatin. Finally, we examined the effect of forced expression of wild-type cohesin on cell proliferation of cohesin-defective cells. Introduction of the wild-type RAD21 and STAG2 suppressed the cell growth of RAD21- (Kasumi-1 and MOLM13) and STAG2-defective (MOLM13) cell lines, respectively, supporting a leukemogenic role of compromised cohesin functions. Less frequent mutations of cohesin components have been described in other cancers, where impaired cohesion and consequent aneuploidy were implicated in oncogenic action. However, 23 cohesin-mutated cases of our cohort had completely normal karyotypes, suggesting that cohesin-mutated cells were not clonally selected because of aneuploidy. Alternatively, a growing body of evidence suggests that cohesin regulate gene expression, arguing for the possibility that cohesin mutations might participate in leukemogenesis through deregulated gene expression. Of additional note, the number of non-silent mutations determined by our whole exome analysis was significantly higher in 6 cohesin-mutated cases compared to non-mutated cases. Since cohesin also participates in post-replicative DNA repair, this may suggest that compromised cohesin function could induce DNA hypermutability and contribute to leukemogenesis. In conclusion, we report a new class of common genetic targets in myeloid malignancies, the cohesin complex. Our findings highlight a possible role of compromised cohesin functions in myeloid leukemogenesis. Disclosures: Haferlach: MLL Munich Leukemia Laboratory: Equity Ownership. Alpermann:MLL Munich Leukemia Laboratory: Employment. Haferlach:MLL Munich Leukemia Laboratory: Equity Ownership.


Sign in / Sign up

Export Citation Format

Share Document