Ham Test For Therapeutic Monitoring Of Eculizumab In Paroxysmal Nocturnal Hemoglobinuria

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4876-4876
Author(s):  
Miriam Arcavi ◽  
Fernanda Ceballo ◽  
Andres L. Brodsky ◽  
Nora Silvia Halperin ◽  
Norma Cantenys ◽  
...  

Abstract Introduction Paroxysmal nocturnal hemoglobinuria (PNH) is a rare acquired clonal disease, caused by an inactivating mutation in the PIG-A gene in a hematopoietic stem cell. The PIG-A gene encodes an enzyme required for glycosylphosphatidylinositol (GPI) anchor synthesis. Its inactivation results in a deficiency of many plasma membrane GPI-anchored proteins -including CD55 and CD59, natural inhibitors of the complement cascade- in the involved stem cell and all its progeny (the PNH clone). Intravascular hemolysis, anemia, thrombosis, acute and chronic renal damage, pulmonary hypertension, abdominal pain, esophagic spasm, erectile dysfunction -among others manifestations- are consequences of complement mediated damage of the sensitive PNH blood cells. In 2007 both the FDA and the EMA approved eculizumab, a monoclonal chimeric antibody targeted against C5 fraction of complement, as the first specific treatment of complement mediated PNH manifestations. Flow cytometry (FC) is the gold standard method for diagnosis. The former diagnostic test -the Ham test- is based on the susceptibility of PHN red blood cells (RBC), when they are incubated with both normal and patient sera to lysis mediated by the alternative pathway of complement (APC). APC is activated, in the Ham test, through sera acidification. Despite its physiopathological value, Ham test has been replaced with flow cytometry to diagnose PNH due to a much higher sensitivity and reproducibility. Aims To evaluate the Ham test in PNH treated patients, to monitor the eculizumab-mediated blockade of APC. Patients and methods Ham test was used to monitor APC blockade in the patient serum, testing the ability of the acidified patient serum to lyse his or her own PNH-RBC. Eight patients were diagnosed as PNH by FC and were treated with eculizumab. Six had a good therapeutic response, with decreased levels of both, LDH and the serum total complement hemolytic capacity (CH50). Ham test, in these six patients, showed hemolysis when PNH-RBC were mixed with normal acidified serum but absence of hemolysis when the acidified serum of eculizumab treated patient was added to the PNH-RBC. This result was called “blockade profile” and shows the “ex vivo” APC blockade, confirming thus the eculizumab success. The remaining two patients showed a persistent positivity of the Ham test at day 14 of eculizumab administration (as PNH-RBC lysis continued taking place with both normal and patient acidified sera). One patient demonstrated break through hemolysis occurring near the end of eculizumab dosing period as indicated by increase in LDH. As LDH may increase due to other possible factors (ie hepatic lesions) the positive Ham test confirmed that intravascular hemolysis was taking place, possibly due to a shorter eculizumab half life. An increase of the eculizumab dose to 1,200 mg/14 days reinstated lower LDH levels and the blockade profile in the Ham test (Table). There has been a single patient treated with eculizumab where LDH did not reduce. There was a persistently positive Ham test, elevated LDH and free hemoglobin levels and normal CH50 values despite a dose of 1,200 mg of eculizumab every 14 days (Table). A genetic study found in this case a C5 mutation, which seems responsible of the lack of response to eculizumab. Conclusions In our experience, the Ham test has proved to be a useful and economic method to monitor the effectiveness of eculizumab treatment in cases with high LDH levels due to either a) other causes than intravascular hemolysis, or b) no responsive patients due to pharmacokinetic (inadequate eculizumab concentration) or pharmacodynamic causes. Disclosures: Brodsky: Alexion Pharmaceuticals: Consultancy, Speakers Bureau. Colin:Alexion Pharmaceuticals: Consultancy.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3682-3682
Author(s):  
Chiharu Sugimori ◽  
Kanako Mochizuki ◽  
Hirohito Yamazaki ◽  
Shinji Nakao

Abstract Acquired aplastic anemia (AA) is thought to be caused by the immune system attack against hematopoietic stem cells. However, there is no direct evidence that an immune system attack against normal hematopoietic stem cells leads to development of AA. The immune system attack may be directed toward abnormal stem cells given the fact that some patients with myelodysplastic syndrome respond to immunosuppressive therapy. Although the presence of a small population of CD55−CD59− blood cells represents a reliable marker for the immune pathophysiology of AA, little is known regarding when and how such paroxysmal nocturnal hemoglobinuria (PNH)-type cells appear in patients with AA. The development of AA with a small population of PNH-type cells was recently observed in an allogeneic stem cell transplant (SCT) recipient. This patient, a 59-year-old male, who had been treated with allogeneic peripheral blood stem cell transplantation (PBSCT) from an HLA-compatible sibling for treatment of very severe AA in March 2002, developed severe pancytopenia in December 2005. Late graft failure (LGF) without residual recipient cells was diagnosed based on the results of a chimerism analysis. Sensitive flow cytometry failed to reveal any increase in the proportion of CD55−CD59− PNH-type blood cells. The patient underwent a second PBSCT from the original donor without preconditioning in February 2006. Although his pancytopenia was completely resolved by day 20, his blood counts gradually decreased from day 60 without any apparent complications. Flow cytometry revealed small populations of PNH-type granulocytes in his peripheral blood (Figure 1). Both the PNH-type and normal phenotype granulocytes were of donor origin. PIG-A gene analyses showed the PNH-type granulocytes in the patient to be a clonal stem cell with an insertion of thymine at position 593 (codon 198). Similar results were obtained from the sorted PNH-type granulocytes obtained 6 months later. The patient was treated with horse antithymocyte globulin and cyclosporine. The patient required no further transfusions after 88 days of the therapy and remains well as of August, 2007. The small population of PNH-type cells was not detectable in any of 50 SCT recipients showing stable engraftment or in an AA patient suffering graft rejection after a SCT. These findings suggest that some factors expressed by the patient induced an immune system attack against autologous hematopoietic cells, leading to de novo development of donor-cell derived AA. This is the first evidence that an immune system attack against normal hematopoietic stem cells results in AA associated with a clonal expansion of a PIG-A mutant which may originally be present in the donor bone marrow. Figure Figure


2021 ◽  
Vol 106 (106(812)) ◽  
pp. 89-92
Author(s):  
M.J. Ruíz-Márquez ◽  
J. Luis-Navarro

Paroxysmal nocturnal hemoglobinuria is a rare non malignant clonal disease, caused by an acquired somatic mutation in a variable number of hematopoietic stem cells, whose consequence is an abnormal sensitivity of blood cells to complement-mediated lysis. It manifests as intravascular hemolytic anemia, a variable degree of bone marrow insufficiency and high thrombotic risk. The effective management of the disease is based on an adequate diagnosis and clinical and laboratory follow-up. Flow cytometry is the method of choice for diagnosis and monitoring of the patient. The only curative treatment is hematopoietic stem cell transplantation. Eculizumab is the first specific treatment approved for this disease. We present the case of a patient diagnosed with paroxysmal nocturnal hemoglobinuria, wo has recently started treatment with eculizumab. We show the clinical and analytical evolution during the first months of treatment as an assessment of is benefit.


2019 ◽  
Author(s):  
Britta Hoechsmann ◽  
Yoshiko Murakami ◽  
Makiko Osato ◽  
Alexej Knaus ◽  
Michi Kawamoto ◽  
...  

AbstractParoxysmal nocturnal hemoglobinuria (PNH) is an acquired hematopoietic stem cell disorder characterized by complement-mediated hemolysis and thrombosis, and bone marrow failure. Affected cells harbor somatic mutation in X-linkedPIGAgene, essential for the initial step in glycosylphosphatidylinositol (GPI) biosynthesis. Loss of GPI biosynthesis results in defective cell-surface expression of GPI-anchored complement regulators CD59 and DAF. The affected stem cells generate many abnormal blood cells after clonal expansion, which occurs under bone marrow failure. Here, we report the mechanistic basis of a disease entity, autoinflammation-paroxysmal nocturnal hemoglobinuria (AIF-PNH), caused by germline mutation plus somatic loss ofPIGTon chromosome 20q. A region containing maternally imprinted genes implicated in clonal expansion in 20q-myeloproliferative syndromes was lost together with normalPIGTfrom paternal chromosome 20. Taking these findings together with a lack of bone marrow failure, the mechanisms of clonal expansion in AIF-PNH appear to differ from those in PNH. AIF-PNH is characterized by intravascular hemolysis and recurrent autoinflammation, such as urticaria, arthralgia, fever and aseptic meningitis. Consistent with PIGT’s essential role in synthesized GPI’s attachment to precursor proteins, non-protein-linked free GPIs appeared on the surface of PIGT-defective cells. PIGT-defective THP-1 cells accumulated higher levels of C3 fragments and C5b-9 complexes, and secreted more IL-1β than PIGA-defective cells after activation of the complement alternative pathway. IL-1β secretion was dependent upon C5b-9 complexes, accounting for the effectiveness of the anti-C5 drug eculizumab for both intravascular hemolysis and autoinflammation. These results suggest that free GPIs enhance complement activation and inflammasome-mediated IL-1β secretion.


Blood ◽  
2004 ◽  
Vol 103 (10) ◽  
pp. 3710-3716 ◽  
Author(s):  
Peter A. Horn ◽  
Kirsten A. Keyser ◽  
Laura J. Peterson ◽  
Tobias Neff ◽  
Bobbie M. Thomasson ◽  
...  

Abstract The use of lentiviral vectors for the transduction of hematopoietic stem cells has evoked much interest owing to their ability to stably integrate into the genome of nondividing cells. However, published large animal studies have reported highly variable gene transfer rates of typically less than 1%. Here we report the use of lentiviral vectors for the transduction of canine CD34+ hematopoietic repopulating cells using a very short, 18-hour transduction protocol. We compared lentiviral transduction of hematopoietic repopulating cells from either stem cell factor (SCF)– and granulocyte-colony stimulating factor (G-CSF)–primed marrow or mobilized peripheral blood in a competitive repopulation assay in 3 dogs. All dogs engrafted rapidly within 9 days. Transgene expression was detected in all lineages (B cells, T cells, granulocytes, and red blood cells as well as platelets) indicating multilineage engraftment of transduced cells, with overall long-term marking levels of up to 12%. Gene transfer levels in mobilized peripheral blood cells were slightly higher than in primed marrow cells. In conclusion, we show efficient lentiviral transduction of canine repopulating cells using an overnight transduction protocol. These results have important implications for the design of stem cell gene therapy protocols, especially for those diseases in which the maintenance of stem cells in culture is a major limitation.


2018 ◽  
Vol 90 (7) ◽  
pp. 57-64 ◽  
Author(s):  
D A SHASHELEVA ◽  
A A MASCHAN ◽  
L N SHELIKHOVA ◽  
U N PETROVA ◽  
E E KURNIKOVA ◽  
...  

The main goal is to optimize hematopoietic stem cell transplantation (HSCT) approach among adolescents and young adults with paroxysmal nocturnal hemoglobinuria (PNH) by means of Graft-versus-host disease (GVHD) and post-transplant complications risk lowering. Materials and methods. We report our experience of HSCT from HLA-matched unrelated donors using TCR alfa/beta and CD19 depletion in 5 pts (1M/4F) with PNH, developed after successful immunosuppressive therapy (IST) of acquired aplastic anemia (AA). Median age of pts at the moment of transplantation was 17,8 years (range 14,5-22,7), median interval from IST to PNH was 4 years (5mo - 6,5 y). In all patients non-severe pancytopenia was present: granulocytes 0,8х109/l (0,8-1,8 х109/l) platelets 106 х109/l (27-143 х109/l) and Hb -78 g/l, median PNH clone size in granulocytes was 94 (range 75-99)%. One pts previously developed sinus thrombosis. Conditioning consisted of thoraco-abdominal irradiation 4-6 Gy, cyclophosphamide 100 mg/kg, fludarabine 150 mg/m2 and anti-thymocyte globulin (ATG) or alemtuzumab. Eculizumab was given from day (-7) till day (+14) (every 7 days, only 4 times). GVHD prophylaxis was tacrolimus ± methotrexate. Results. Infusedgraft characteristics were: CD34+ - 8,1х106/kg, CD3TCRab·150х103/kg, CD3gd+ - 7,3х106/kg, СD19+ - 221х103/kg, NK -6,4х108/kg. Engraftment was achieved in all 5 pts with a median of 15(12-18) и 13(10-18) days for granulocytes and platelets, respectively. Skin acute GVHD grade I developed in only 1 pt, and subsided with short course of glucocorticoids. CMV reactivation occurred in 1 pt; there were no episodes of Epstein-Barr Virus (EBV) o rAdenovirus (AdV) reactivation. Full donor myeloid chimerism was established in all pts by day +30. Immune reconstitution was delayed until 6 months after transplant but no severe infections occurred. All pts are alive 1,7-5,5 years (med 4 years) after HSCT with normal hematopoiesis and immune function, full donor chimerism and no late sequelae. Conclusions. Transplantation of TCRalfa/beta and CD19 depleted hematopoietic cells from matched unrelated donor after immunoablative conditioning and supported with short course of eculizumab is perfectly safe and efficient technology leading to cure in young patients with PNH.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Petter Säwen ◽  
Mohamed Eldeeb ◽  
Eva Erlandsson ◽  
Trine A Kristiansen ◽  
Cecilia Laterza ◽  
...  

A hallmark of adult hematopoiesis is the continuous replacement of blood cells with limited lifespans. While active hematopoietic stem cell (HSC) contribution to multilineage hematopoiesis is the foundation of clinical HSC transplantation, recent reports have questioned the physiological contribution of HSCs to normal/steady-state adult hematopoiesis. Here, we use inducible lineage tracing from genetically marked adult HSCs and reveal robust HSC-derived multilineage hematopoiesis. This commences via defined progenitor cells, but varies substantially in between different hematopoietic lineages. By contrast, adult HSC contribution to hematopoietic cells with proposed fetal origins is neglible. Finally, we establish that the HSC contribution to multilineage hematopoiesis declines with increasing age. Therefore, while HSCs are active contributors to native adult hematopoiesis, it appears that the numerical increase of HSCs is a physiologically relevant compensatory mechanism to account for their reduced differentiation capacity with age.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Lorenzo Canti ◽  
Stéphanie Humblet-Baron ◽  
Isabelle Desombere ◽  
Julika Neumann ◽  
Pieter Pannus ◽  
...  

Abstract Background Factors affecting response to SARS-CoV-2 mRNA vaccine in allogeneic hematopoietic stem cell transplantation (allo-HCT) recipients remain to be elucidated. Methods Forty allo-HCT recipients were included in a study of immunization with BNT162b2 mRNA vaccine at days 0 and 21. Binding antibodies (Ab) to SARS-CoV-2 receptor binding domain (RBD) were assessed at days 0, 21, 28, and 49 while neutralizing Ab against SARS-CoV-2 wild type (NT50) were assessed at days 0 and 49. Results observed in allo-HCT patients were compared to those obtained in 40 healthy adults naive of SARS-CoV-2 infection. Flow cytometry analysis of peripheral blood cells was performed before vaccination to identify potential predictors of Ab responses. Results Three patients had detectable anti-RBD Ab before vaccination. Among the 37 SARS-CoV-2 naive patients, 20 (54%) and 32 (86%) patients had detectable anti-RBD Ab 21 days and 49 days postvaccination. Comparing anti-RBD Ab levels in allo-HCT recipients and healthy adults, we observed significantly lower anti-RBD Ab levels in allo-HCT recipients at days 21, 28 and 49. Further, 49% of allo-HCT patients versus 88% of healthy adults had detectable NT50 Ab at day 49 while allo-HCT recipients had significantly lower NT50 Ab titers than healthy adults (P = 0.0004). Ongoing moderate/severe chronic GVHD (P < 0.01) as well as rituximab administration in the year prior to vaccination (P < 0.05) correlated with low anti-RBD and NT50 Ab titers at 49 days after the first vaccination in multivariate analyses. Compared to healthy adults, allo-HCT patients without chronic GVHD or rituximab therapy had comparable anti-RBD Ab levels and NT50 Ab titers at day 49. Flow cytometry analyses before vaccination indicated that Ab responses in allo-HCT patients were strongly correlated with the number of memory B cells and of naive CD4+ T cells (r > 0.5, P < 0.01) and more weakly with the number of follicular helper T cells (r = 0.4, P = 0.01). Conclusions Chronic GVHD and rituximab administration in allo-HCT recipients are associated with reduced Ab responses to BNT162b2 vaccination. Immunological markers could help identify allo-HCT patients at risk of poor Ab response to mRNA vaccination. Trial registration The study was registered at clinicaltrialsregister.eu on 11 March 2021 (EudractCT # 2021-000673-83).


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4580-4580
Author(s):  
Monica M Rivera Franco ◽  
Eucario Leon Rodriguez ◽  
Diana Gomez Martin ◽  
Javier Merayo Chalico ◽  
Jorge Alcocer Varela

Abstract Background Graft versus host disease (GVHD) is the major complication of allogeneic hematopoietic stem cell transplantation. It is characterized by an imbalance between the effector and regulatory arms of the immune system which results in the over production of inflammatory cytokines. Regulatory T (T regs) cells and T helper 17 (Th17) cells are two recently described lymphocyte subsets with opposing actions. Both can develop from naïve CD4+ T cell precursors under the influence of TGFβ1. Th17 lymphocytes, are key effector cells in rodent models of human diseases including GVHD. The other subset, T regs, is essential for dominant immunologic tolerance. At our institution, patients transplanted using G-CSF primed bone marrow (G-BM), have a lower incidence of acute and chronic GVHD when compared to those transplanted with peripheral blood and not primed bone marrow. Some microenvironment characteristics of this hematopoietic stem cells (HSC) source remain unknown, as well as the difference between Tregs, Th17 and cytokine levels in patients who develop GVHD and those who do not. Objective To analyze the characteristics of thirty-eight G-BM donor samples, identifying lymphocytes subsets and associated cytokines, and comparing patients who developed chronic GVHD (cGVHD) and those who did not. Materials and Methods A prospective analysis was performed in 38 G-BM samples from donors from 1999 to 2016. Mononuclear cells were defrosted, counted, and viability was evaluated. A 24 hour resting with RPMI, and posterior activation with PMA (50 ng/ml) for 48 hours was performed. Cells were harvested and cytokines were evaluated by flow cytometry (CBA assay). From each sample, one million mononuclear cells were permeabilized, fixed, and stained with CD4-FITC, IL17A-PE, IFN-γ APC, and IL-4 PECy7, for their posterior phenotipication by flow cytometry. The samples were obtained in a BD LSR Fortessa cytometry, and analyzed with the Flow-Jo software. Patients (recipients) information was analyzed using SPSS v.21. Results GVHD incidence was reported as following: Three (8%) patients developed acute GVHD (2 grade II, and 1 grade IV), 11 patients (29%) developed chronic GVHD (9% extensive, and 91% limited), and 24 patients did not present either. Mononuclear cells from G-BM from donors of patients who developed cGVHD showed a pro inflammatory response, characterized by an increased concentration of IL-17A (15.5 vs 0.71 pg/mL, p=0.013), TNF-α (80.27 vs 0.13 pg/mL, p=0.001), and IL-6 (4953.6 vs 11.75 pg/mL, p=0.025), after a mitogenic stimulation, compared to cells from donors of patients who did not developed GVHD. On the other hand, a decreased IL-10 production (2.62 vs 52.81 pg/mL, p=0.001) was documented in mononuclear cells from donors of patients who developed chronic GVHD, compared to donor cells of patients who did not. No significant difference in the production of IL-2, IL-4, and IFN-γ was observed. There was no difference in Th1 and Th2 between both groups, but mononuclear cells from donors of patients who developed chronic GVHD had a higher percentage of Th17 (1.02% vs 0.46%, p<0.001), and less Tregs (0.88% vs 1.95%, p<0.001), compared to those who did not developed GVHD. Conclusions Patients who develop cGVHD (29%) are characterized by a pro inflammatory response with an increased production of IL-17A, IL-6, and IFN-γ, and also a major percentage of Th17 cells. Also, a decreased suppressive response was documented with reduced IL-10 and Tregs levels. The low incidence of cGVHD show that G-CSF primed bone marrow is an excellent source for allogeneic HSC transplantations, and would be useful to compare these results with other HSC sources. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Tyler J. Albert ◽  
Erik R. Swenson

Blood is a dynamic fluid consisting of cellular and plasma components undergoing constant regeneration and recycling. Like most physiological systems, the concentrations of these components are tightly regulated within narrow limits under normal conditions. In the critically-ill population, however, haematological abnormalities frequently occur and are largely due to non-haematological single- or multiple-organ pathology. Haematopoiesis originates from the pluripotent stem cell, which undergoes replication, proliferation, and differentiation, giving rise to cells of the erythroid, myeloid, and lymphoid series, as well as megakaryocytes, the precursors to platelets. The haemostatic system is responsible for maintaining blood fluidity and, at the same time, prevents blood loss by initiating rapid, localized, and appropriate blood clotting at sites of vascular damage. This system is complex, comprising both cellular and plasma elements, i.e. platelets, coagulation and fibrinolytic cascades, the natural intrinsic and extrinsic pathways of anticoagulation, and the vascular endothelium. A rapid, reliable, and inexpensive method of examining haematological disorders is the peripheral blood smear, which allows practitioners to assess the functional status of the bone marrow during cytopenic states. Red blood cells, which are primarily concerned with oxygen and carbon dioxide transport, have a normal lifespan of only 120 days and require constant erythropoiesis. White blood cells represent a summation of several circulating cell types, each deriving from the hematopoietic stem cell, together forming the critical components of both the innate and adaptive immune systems. Platelets are integral to haemostasis, and also aid our inflammatory and immune responses, help maintain vascular integrity, and contribute to wound healing.


Sign in / Sign up

Export Citation Format

Share Document