Murine Hemophilia A With Or Without Pre-Existing Anti-Factor VIII Inhibitors Is Partially Corrected By Factor VIII Stored In Platelets After Intraosseous Infusion Of Lentiviral Vectors Into Bone Marrow Without Preconditioning

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 719-719
Author(s):  
Xuefeng Wang ◽  
Simon C. Shin ◽  
Chiang Andy ◽  
Dao Pan ◽  
David Rawlings ◽  
...  

Abstract Introduction Platelets may comprise an ideal vehicle for delivering FVIII in hemophilia A (HemA) as FVIII stored in platelet α-granules is protected from neutralization by inhibitory antibodies and, during bleeding, activated platelets locally excrete their contents to promote clot formation. In order to avoid specific challenges posed by ex vivo gene delivery including, in particular, the requirement to pre-condition the subject, we evaluated intraosseous (IO) infusion of self-inactivating lentiviral vectors (LV) for in situ gene transfer into bone marrow cells. In previous studies, we confirmed that hematopoietic stem cells (HSCs) can be efficiently transduced to express GFP after IO administration of LV driven by a MND promoter (M-GFP-LV). Methods In the current study, we aimed at limiting transgene expression to the megakaryocyte lineages using IO delivery of 20 µL LV containing either GFP (G-GFP-LV) or a B-domain variant human FVIII (G-F8-LV) gene under the control of megakaryocyte strictly specific promoter glycoprotein 1bα (Gp1bα). Results In M-GFP-LV treated control mice, GFP was detected in 6.4% of HSCs, 3.4% of B220+, and 9.0% of CD11c+ bone marrow cells on day 29. In contrast, in G-GFP-LV (6.0E+08 TU/mL) treated mice, GFP was undetectable in bone marrow HSCs, B220+, CD11c+ or CD11b+ cells. GFP expression level in platelets of G-GFP-LV treated mice was ten folds of that in M-GFP-LV treated mice (0.1% vs 0.01%). It indicated that in platelets, the activity of Gp1bα was stronger than that of MND. More importantly, GFP expression levels were stable over 100 days, suggesting that platelets containing the transgene products did not elicit transgene-specific immune responses. Next, we treated HemA mice with G-F8-LV (6.0 E+07 TU/mL). There was no detectable hFVIII expression in bone marrow HSCs on day 8 or in blood cells (CD3ε+, B220+, CD11c+ or CD11b+) on day 35. However, up to 3% platelets express hFVIII on day 91. These results suggested that HSCs in HemA mice were successfully transduced by G-F8-LV after IO infusion, and in the long term, FVIII was synthesized in megakaryocytes and stored in platelet α-granules. In treated mice, the average percentage of platelets expressing hFVIII was stable at 1-2% from day 27 to day 160. The average FVIII antigen level in platelets on day 112 was 1 mU per 1 × 108 platelets, which was comparable with platelet FVIII in transgenic and ex vivo gene therapy treated mice. We also evaluated LV-treated HemA animals for phenotypic correction of bleeding diathesis by tail clip assay. The blood loss was 41% (n=7), 48% (n=5) and 33% (n=5) compared with control HemA (normalized to 100%), mock treated HemA (∼100%), and wild-type (2.5%) mice on days 35, 118 and 160, respectively. Additionally, there was neither detectable FVIII activity nor anti-FVIII antibodies in blood on day 160, which indicated that there was insignificant leaky expression of FVIII in other cells. Finally, we also infused G-F8-LV into HemA inhibitor mice. Inhibitors were induced by repeated injection of 3U recombinant hFVIII. The average antibody level was 80 Bethesda Unit before IO infusion of the vectors. In G-F8-LV treated mice, the average hFVIII antigen level on day 27 was 0.74 mU per 1 x 108 platelets (n=5). Bleeding assay was performed on day 160. The blood loss of treated mice was significantly reduced compared with untreated HemA mice, indicating that IO infusion of G-F8-LV can overcome anti-FVIII antibodies and correct hemophilia phenotype. Conclusion We have successfully transduced HSCs in situ by a single infusion of LVs into bone marrow to correct hemophilia A. Gp1bα promoter in lentiviral vectors can specifically direct the transgene expression in mouse platelets. Following IO infusion of G-F8-LV, FVIII stored in platelets can persistently and partially correct the HemA phenotype for at least five months (experimental duration) in mice with and without pre-existing inhibitors. Overall, direct transduction of bone marrow cells targeting platelet-specific FVIII expression may provide an effective therapy to treat severe hemophilia A patients with high-titer inhibitors. Disclosures: No relevant conflicts of interest to declare.

2009 ◽  
Vol 62 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Agapi Parcharidou ◽  
Azra Raza ◽  
Theofanis Economopoulos ◽  
Efstathios Papageorgiou ◽  
Dimitra Anagnostou ◽  
...  

Author(s):  
Carolina De Oliveira ◽  
Ana Paula R. Abud ◽  
Eneida Da Lozzo ◽  
Raffaello Di Bernardi ◽  
Simone De Oliveira ◽  
...  

Paracelsus once wrote: "All things are poison and nothing is without poison, only the dose permits something not to be poisonous." Latter Hahnemann formulated the law of similars, preparations which cause certain symptoms in healthy individuals if given in diluted form to patients exhibiting similar symptoms will cure it. Highly diluted natural complexes prepared according to Hahnemann’s ancient techniques may represent a new form of immunomodulatory therapy. The lack of scientific research with highly diluted products led us to investigate the in vivo and in vitro actions of commonly used medications. Here we describe the results of experimental studies aimed at verifying the effects of Mercurius solubilis, Atropa Belladonna, Lachesis muta and Bryonia alba. All medications were at 200cH dilution. Animals were maintained for 7 days and were allowed to drink the medications, which were prepared in a way that the final dilution and agitation (200cH) was performed in drinking water. The medication bottle was changed and sucussed every afternoon. Co-culture of non treated mice bone marrow cells and in vitro treated peritoneal macrophages were also performed. After animal treatment the bone marrow cells were immunophenotyped with hematopoietic lineage markers on a flow cytometer. We have determined CD11b levels on bone marrow cells after culture and co-culture with treated macrophages and these macrophages were processed to scanning electron microscopy. We have observed by morphological changes that macrophages were activated after all treatments. Mercurius solubilis treated mice showed an increase in CD3 expression and in CD11b on nonadherent bone marrow cells after co-culture with in vitro treatment. Atropa Belladonna increased CD45R and decreased Ly-6G expression on bone marrow cells after animal treatment. Lachesis muta increased CD3, CD45R and, CD11c expression and decreased CD11b ex vivo and in nonadherent cells from co-culture. Bryonia alba increased Ly-6G, CD11c and CD11b expression ex vivo and when in co-culture CD11b was increased in adherent cells as well as decreased in nonadherent cells. With these results we have demonstrated that highly diluted medications act on immune cells activating macrophages, and changing the expression profile of hematopoietic lineage markers. Highly diluted medications are less toxic and cheaper than other commonly used medications and based on our observations, it is therefore conceivable that this medications which are able to act on bone marrow and immune cells may have a potential therapeutic use in clinical applications in diseases were the immune system is affected and also as regenerative medicine as it may allow proliferation and differentiation of progenitor cells.


Blood ◽  
2000 ◽  
Vol 95 (3) ◽  
pp. 829-836 ◽  
Author(s):  
Timothy W. Austin ◽  
Suzan Salimi ◽  
Gabor Veres ◽  
Franck Morel ◽  
Heini Ilves ◽  
...  

Using a mouse bone marrow transplantation model, the authors evaluated a Moloney murine leukemia virus (MMLV)-based vector encoding 2 anti-human immunodeficiency virus genes for long-term expression in blood cells. The vector also encoded the human nerve growth factor receptor (NGFR) to serve as a cell-surface marker for in vivo tracking of transduced cells. NGFR+ cells were detected in blood leukocytes of all mice (n=16; range 16%-45%) 4 to 5 weeks after transplantation and were repeatedly detected in blood erythrocytes, platelets, monocytes, granulocytes, T cells, and B cells of all mice for up to 8 months. Transgene expression in individual mice was not blocked in the various cell lineages of the peripheral blood and spleen, in several stages of T-cell maturation in the thymus, or in the Lin−/loSca-1+ and c-kit+Sca-1+ subsets of bone marrow cells highly enriched for long-term multilineage-reconstituting activity. Serial transplantation of purified NGFR+c-kit+Sca-1+bone marrow cells resulted in the reconstitution of multilineage hematopoiesis by donor type NGFR+ cells in all engrafted mice. The authors concluded that MMLV-based vectors were capable of efficient and sustained transgene expression in multiple lineages of peripheral blood cells and hematopoietic organs and in hematopoietic stem cell (HSC) populations. Differentiation of engrafting HSC to peripheral blood cells is not necessarily associated with dramatic suppression of retroviral gene expression. In light of earlier studies showing that vector elements other than the long-terminal repeat enhancer, promoter, and primer binding site can have an impact on long-term transgene expression, these findings accentuate the importance of empirically testing retroviral vectors to determine lasting in vivo expression.


2002 ◽  
Vol 283 (2) ◽  
pp. H468-H473 ◽  
Author(s):  
Tao-Sheng Li ◽  
Kimikazu Hamano ◽  
Kazuhiko Suzuki ◽  
Hiroshi Ito ◽  
Nobuya Zempo ◽  
...  

Therapeutic angiogenesis can be induced by local implantation of bone marrow cells. We tried to enhance the angiogenic potential of this treatment by ex vivo hypoxia stimulation of bone marrow cells before implantation. Bone marrow cells were collected and cultured at 33°C under 2% O2-5% CO2-90% N2 (hypoxia) or 95% air-5% CO2 (normoxia). Cells were also injected into the ischemic hindlimb of rats after 24 h of culture. Hypoxia culture increased the mRNA expression of vascular endothelial growth factor (VEGF), vascular endothelial (VE)-cadherin, and fetal liver kinase-1 (Flk-1) from 2.5- to fivefold in bone marrow cells. The levels of VEGF protein in the ischemic hindlimb were significantly higher 1 and 3 days after implantation with hypoxia-cultured cells than with normoxia-cultured or noncultured cells. The microvessel density and blood flow rate in the ischemic hindlimbs were also significantly ( P< 0.001) higher 2 wk after implantation with hypoxia-cultured cells (89.7 ± 5.5%) than with normoxia-cultured cells (67.0 ± 9.6%) or noncultured cells (70.4 ± 7.7%). Ex vivo hypoxia stimulation increased the VEGF mRNA expression and endothelial differentiation of bone marrow cells, which together contributed to improved therapeutic angiogenesis in the ischemic hindlimb after implantation.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2594-2594 ◽  
Author(s):  
Ariane Tormin ◽  
Ou Li ◽  
Jan Claas Brune ◽  
Stuart Walsh ◽  
Mats Ehinger ◽  
...  

Abstract Abstract 2594 Mesenchymal stem cells (MSC) are of central importance for the hematopoietic microenvironment. However, the exact contribution of specified MSC populations to bone marrow stroma anatomy and function is unknown. We have previously characterized the phenotype of primary human bone marrow MSC and found that all assayable CFU-F were highly and exclusively enriched not only in the lin−/CD271+/CD45−/CD146+ cell fraction, but also in lin−/CD271+/CD45−/CD146−/low cells. Both populations, regardless of CD146 expression, shared a similar phenotype and genotype and gave rise to typical cultured stroma cells. However, we observed that CD146 expression was up-regulated in normoxia and down-regulated in hypoxia, which correlated to in situ localization differences: CD146 co-expressing reticular cells were located in perivascular regions, whereas bone-lining MSC expressed CD271 alone (Tormin et al, Blood 2009, 114[22]:107). We now went on to further characterize the two populations with regard to in-situ localization and function. Multicolor confocal microscopy analysis of normal human bone marrow sections revealed that CD34+ hematopoietic stem/progenitor cells were located in close proximity to CD271+ MSC in perivascular as well as endosteal regions. Ongoing experiments address whether particular HSC subsets localize specifically with certain stroma stem cell populations. To further investigate possible functional differences between lin−/CD271+/CD45−/CD146+ and lin−/CD271+/CD45−/CD146-/low cells, FACS-sorted single cells were clonally expanded, loaded overnight on hydroxyapatite/tricalcium phosphate (HA/TCP) ceramic powder and transplanted s.c. into NOD-SCID mice. Eight weeks post transplantation, bone, adipocytes, fibroblastic tissue, and capillaries could be detected in both transplants. Orthotopic intrafemoral transplantations into irradiated NSG mice were performed with GFP-labeled MSC generated from either lin−/CD271+/CD45−/CD146-/low or lin−/CD271+/CD45−/CD146+ cells. After 8 weeks, GFP+ cells could be detected in the perivascular regions surrounding the endothelium of vessels, and as cells lining the surface of cortical and trabecular bone, surrounding adipocytes, or as reticular cells in the marrow space. Some of the bone-lining GFP+ MSC were found to express N-cadherin. Interestingly, this anatomical distribution is similar to the localization of primary MSC in human marrow in situ. No differences were observed between transplanted cells from lin−/CD271+/CD45−/CD146-/low MSC compared to lin−/CD271+/CD45−/CD146+ derived cells. Secondary colony-formation capacity was investigated by harvesting bone marrow cells 8 weeks post intrafemoral transplantation and plating them for CFU-F in standard MSC culture medium. GFP-positive fibroblastic colony growth was detected in the bone marrow of mice transplanted with lin−/CD271+/CD45−/CD146-/low as well as in the marrow of mice transplanted with lin−/CD271+/CD45−/CD146+ derived MSC. Taken together, our findings indicate that lin−/CD271+/CD45−/CD146-/low and lin−/CD271+/CD45−/CD146+ bone marrow cells are developmentally closely-related stroma stem cells with similar functional properties but different in-situ localization, which might be the first step towards a better characterization of the human hematopoietic microenvironment. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 553-553
Author(s):  
Cara L Lunn ◽  
Justin Tibbitts ◽  
James N Ley ◽  
Jin Shao ◽  
Timothy Graubert ◽  
...  

Abstract Abstract 553 Myelodysplastic syndromes (MDS) are stem cell disorders characterized by ineffective hematopoiesis with increased levels of hematopoietic cell apoptosis. Recent discoveries by our group and others suggest that perturbations in pre-mRNA splicing may play a role in MDS pathogenesis. Indeed, more than half of all MDS patients have a mutation in one of eight splicing factors. U2AF1 (U2AF35), a gene encoding a splicing factor involved in intronic 3'-splice site recognition, is mutated in 8.7% of MDS patients. The consequence of the highly recurrent serine to phenylalanine mutation at position 34 (S34F) of U2AF1 in hematopoiesis is unknown. Therefore, to examine the effects of mutant U2AF1(S34F) on hematopoiesis, we utilized the MSCV-IRES-GFP retroviral system to introduce mutant U2AF1(S34F) or wild type U2AF1(WT), or an empty vector control, into mouse bone marrow cells for in vitro and in vivo studies. Expression of U2AF1(S34F) results in reduced expansion of transduced bone marrow cells (marked by GFP) compared to both U2AF1(WT) or empty vector-transduced cells grown in suspension culture (2 vs 4-fold change, respectively; p<0.001, n=3). Additionally, U2AF1(S34F)-transduced cells have increased levels of apoptosis (Annexin V+/7AAD+) in culture compared to U2AF1(WT) (p=0.03) and empty vector-transduced cells (p=0.02) (n=3). We also examined the effects of the U2AF1(S34F) mutation in vivo using bone marrow transplantation. The percentage of GFP+ cells in the peripheral blood of recipient mice transplanted with MSCV-transduced bone marrow was significantly reduced at 6 months post-transplant with U2AF1(S34F) expression (average=4%) compared to U2AF1(WT) (average=44%) and empty vector (average=65%) (p<0.02, n= 6–9 mice each). Transduction efficiencies were similar within experiments. There was no consistent alteration in lineage distribution of GFP+ cells in the peripheral blood of these mice. To overcome some of the limitations of retroviral models, we created a single-copy, doxycycline-inducible U2AF1(S34F) transgenic mouse to model the effect of U2AF1(S34F) expression on hematopoiesis. As a control for U2AF1 protein overexpression, we created an additional single-copy, doxycycline-inducible U2AF1(WT) transgenic mouse with transgene integration into the same locus as the U2AF1(S34F) mouse. Induction of U2AF1(S34F) transgene expression in bone marrow cells in culture with doxycycline treatment (200 ng/ml for 5 days) resulted in reduced cell numbers when compared to uninduced U2AF1(S34F) transgenic cells (ratio of growth of induced/uninduced cells = 0.38), while cell proliferation was not altered for U2AF1(WT) transgenic cells (ratio of growth of induced/uninduced cells = 1.13) (p<0.001, n=3). In addition, doxycycline-induced U2AF1(S34F) expression results in increased apoptosis (Annexin V+) compared to uninduced U2AF1(S34F) transgenic cells (21% vs 11%, p=0.01) and induced U2AF1(WT) transgenic cells in culture (21% vs 9.3%, p=0.008) (n=4). To examine the effects of mutant U2AF1(S34F) induction in vivo, we transplanted mutant U2AF1(S34F) or U2AF1(WT) transgenic bone marrow cells into congenic wild type recipient mice and induced transgene expression 6 weeks post-transplant using 2 mg/ml doxycycline in the drinking water for 5 days. Induction of U2AF1(S34F) expression in vivo results in reduced number of WBCs in the peripheral blood of recipient mice compared to mice with uninduced U2AF1(S34F) transgenic bone marrow (3.4k vs 5.6k, p=0.01, n=3). In addition, recipient mice with induced U2AF1(S34F) bone marrow had reduced number of bone marrow cells per femur when compared to uninduced U2AF1(S34F) recipient mice (3.9M vs 13.1M, p=0.04) and induced U2AF1(WT) recipient mice (3.9M vs 12.4M, p=0.03) (n=3). The number of neutrophils in peripheral blood (p<0.001), bone marrow (p=0.04), and spleen (p=0.04) of induced U2AF1(S34F) recipient mice were all significantly lower compared to uninduced U2AF1(S34F) mice (n=3). The total numbers of c-Kit+/lineage-/Sca+ hematopoietic progenitor cells were not affected in induced U2AF1(S34F) recipient mice compared to uninduced U2AF1(S34F) (p=0.75) or induced U2AF1(WT) recipient mice (p=0.46, n=3) after 5 days of treatment. Collectively, these results suggest that the U2AF1(S34F) mutation may contribute to abnormal hematopoiesis in vivo. Longer periods of doxycycline-induction in vivo are ongoing and will be presented. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 477-477
Author(s):  
Christopher B Cole ◽  
Angela M. Verdoni ◽  
David H Spencer ◽  
Timothy J. Ley

We previously identified recurrent mutations in the DNA methyltransferase DNMT3A in patients with acute myeloid leukemia (AML). DNMT3A and the highly homologous gene DNMT3B encode the two methyltransferases that are primarily responsible for mediating de novo methylation of specific CpG residues during differentiation. Loss of Dnmt3a in hematopoietic stem cells impairs their ability to differentiate into committed progenitors (Challen et al Nat Gen 44:23, 2011). Importantly, DNMT3A mutations are mutually exclusive of the favorable prognosis AML-initiating translocations, including the t(15;17) translocation (which creates the PML-RARA fusion gene), and translocations involving MLL. PML-RARA has been shown to interact with DNMT3A in vitro (Di Croce et al Science 295:1079,2002), and to require DNMT3A to induce methylation and transcriptional silencing of a subset of specific target genes. These findings, and the lack of DNMT3A mutations in APL patients, suggest that PML-RARA may require functional DNMT3A to initiate leukemia. To investigate this possibility, we utilized a well-characterized transgenic mouse model (in a pure B6 background) in which expression of PML-RARA is driven in hematopoietic stem/progenitor cells by the mouse Cathepsin G locus (Ctsg-PML-RARA+/- mice). These mice spontaneously develop acute promyelocytic leukemia (APL) with high penetrance and long latency, and also exhibit a preleukemic phenotype marked by the accumulation of myeloid cells in bone marrow and spleen. In addition, myeloid progenitor cells derived from these mice have the ability to serially replate in methylcellulose cultures, demonstrating aberrant self-renewal. We generated Ctsg-PML-RARA+/- mice lacking Dnmt3a (PML-RARA+/- x Dnmt3a-/-) as well as mice in which conditional ablation of Dnmt3b in hematopoietic cells is driven by Vav-Cre (PML-RARA+/- x Dnmt3b fl/fl x Vav-Cre+). Loss of Dnmt3a completely abrogated the ex vivo replating ability of PML-RARA bone marrow (Figure 1). Although colonies from both PML-RARA+/- and PML-RARA+/- x Dnmt3a-/- mice appeared similar in morphology and number on the first plating, PML-RARA+/- x Dnmt3a-/- marrow ceased to form colonies with subsequent replating (see Figure), and cultured cells lost the expression of the myeloid marker CD11b. The same phenotype was also observed using bone marrow from both genotypes that was secondarily transplanted into wild type recipients, indicating that it is intrinsic to transplantable hematopoietic progenitors. Reintroduction of DNMT3A into bone marrow cells derived from PML-RARA+/- x Dnmt3a-/- mice with retroviral transduction restored replating ability and CD11b expression. Competitive repopulation experiments with PML-RARA+/- x Dnmt3a-/- marrow revealed a decreased contribution to peripheral lymphoid and myeloid cells at 4 weeks, relative to PML-RARA+/- or WT control animals. Finally, 12 weeks after transplantation, recipients of PML-RARA+/- x Dnmt3a-/- bone marrow did not display an accumulation of myeloid cells in the bone marrow and spleen. Importantly, bone marrow from PML-RARA+/- x Dnmt3b fl/fl x Vav-Cre+/- mice displayed no replating deficit or loss of CD11b expression ex vivo, indicating different functions for Dnmt3a versus Dnmt3b in this model. Finally, we interrogated the effect of Dnmt3a loss on bone marrow DNA methylation patterns using a liquid phase DNA capture technique that sampled ∼1.9 million mouse CpGs at >10x coverage. Loss of Dnmt3a caused a widespread loss of DNA methylation in whole bone marrow cells, with 36,000 CpGs that were highly methylated (methylation value >0.7) in the PML-RARA+/- and WT mice, but hypomethylated (methylation value <0.4) in Dnmt3a-/- and PML-RARA+/- x Dnmt3a-/- mice. Characterization of the effect of Dnmt3a loss on leukemia latency, penetrance, and phenotype in PML-RARA+/- mice is currently being defined in a tumor watch. In summary, we have demonstrated that PML-RARA requires functional Dnmt3a (but not Dnmt3b) to drive aberrant self-renewal of myeloid progenitors ex vivo, and that loss of Dnmt3a leads to widespread DNA hypomethylation in bone marrow cells, and abrogates preleukemic changes in mice expressing PML-RARA. This data may explain why DNMT3A mutations are not found in patients with APL initiated by PML-RARA. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Jihye Ha ◽  
Hyunsoo Cho ◽  
Taek Gyu Lee ◽  
Saeam Shin ◽  
Haerim Chung ◽  
...  

Abstract Accurate detection of cytogenetic abnormalities has become more important for improving risk-adapted treatment strategies in multiple myeloma (MM). However, precise cytogenetic testing by fluorescence in situ hybridization (FISH) is challenged by the dilution effect of bone marrow specimens and poor growth of plasma cells ex vivo. To address these issues, we compared the performances of three different enrichment modalities for FISH: direct FISH, fluorescence immunophenotyping and interphase cytogenetics as a tool for the investigation of neoplasms (FICTION) technique, and a plasma cell sorting FISH with fluorescence-activated cell sorter (FACS). We examined cytogenetic abnormalities in bone marrow cells of 493 patients with newly diagnosed MM and compared the efficacy of each modality. FISH disclosed cytogenetic abnormalities in 38.0% of samples by direct FISH, 56.3% by FICTION, and 95.5% by FACS-FISH, and the percentage of cells with abnormal signals detected by FISH was higher by FACS-FISH than direct FISH or FICTION. Our results suggest that the efficacy of FISH is dependent on the plasma cell enrichment modalities and reveal that plasma cell sorting FISH with FACS enables better detection of cytogenetic abnormalities in diagnostic MM samples with low plasma cell frequency.


Blood ◽  
1984 ◽  
Vol 64 (1) ◽  
pp. 78-83 ◽  
Author(s):  
AG Leary ◽  
M Ogawa

Abstract We present a colony assay system that allows in situ identification of human basophil/mast cell (basophil) colonies. In methylcellulose culture, in the presence of phytohemagglutinin-leukocyte conditioned media (PHA-LCM), human peripheral blood and bone marrow cells form colonies that can be distinguished by their unique morphological characteristics. Pure basophil colonies are diffuse, small colonies containing small, round, highly refractile cells. These characteristics of the constituent cells led us to the observation that a significant number of basophils are found in combination with eosinophils. The mixed eosinophil/basophil colonies have the distinctive elements of pure eosinophil and pure basophil colonies. Usually, these are diffuse colonies with compact clusters of slightly larger, darker-appearing cells. We also found colonies that contained basophils and neutrophils/monocytes, but this type could not be consistently identified by in situ morphology. Cytochemical analysis confirmed the metachromatic nature of the granules in the basophils. The presence of IgE receptors on the cells was documented by indirect immunofluorescent staining after passive sensitization with purified human IgE. Peripheral blood cells from six healthy volunteers formed 5.7 +/- 1.0 (mean +/- SEM) pure colonies in 2 X 10(5) cells. Cultures of bone marrow cells from patients with various types of anemia had 9.0 +/- 1.5 colonies in 10(5) cells. This is the first description of a colony assay system for in situ identification of a pure population of basophilic granulocytes.


Sign in / Sign up

Export Citation Format

Share Document