Next Generation Humanized Mice Support Engraftment of Myelofibrosis CD34+ Cells

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1880-1880
Author(s):  
Alexandre P.A. Theocharides ◽  
Rouven Müller ◽  
Yasuyuki Saito ◽  
Richard A. Flavell ◽  
Markus G. Manz

Abstract Introduction While the key transforming genetic events occur in the developing cancerous cell, this cell is dependent on its environmental context and interaction for competitive outgrowth and subsequent tumor-development. Myelofibrosis (MF) represents a model cancer disease with stepwise development from a chronic state that depends on microenvironmental interactions to a more aggressive disease. Engraftment of primary MF patient cells in murine xenograft models is poor (Wang et al., JCI 2012) and is possibly explained by the lack of supportive microenvironmental factors. Thrombopoietin (TPO) has been implicated in the pathogenesis of MF (Schepers et al., Cell Stem Cell 2013, Dadfarnia et al., Blood 2014, Abdel-Wahab et al., Annu Rev Med 2009). Also, the interaction between human hematopoietic cells and SIRPα expressed on mouse macrophages is critical for human engraftment in xenografts (Takenaka et al., Nature Immunology 2007). We hypothesized that the constitutive expression of human TPO and human SIRPα may promote the development of the human MF clone in mouse xenografts. Methods Purified peripheral blood CD34+ cells were collected from six patients with primary MF or post-PV/ET MF and low to intermediate 2 risk disease according to the dynamic international prognostic scoring system (DIPSS). Four patients carried a JAK2-V617F mutation and two patients carried a calreticulin (CALR) mutation. CD34+ cells were intrahepatically transplanted into sublethally irradiated newborn humanSIRPα-transgenic/humanTPO-knockin Rag2-/- gamma-/- (TPO-SIRPα) mice (Rongvaux et al., Ann Rev. Immunol 2013). NSG mice were used as controls and injected with the same number of CD34+ cells. Two to three mice were injected with ≥1 million CD34+ cells from the same patient sample each. Mice were sacrificed 12-16 weeks after transplantation and human engraftment and hematopoietic cell lineage distribution was assessed by flow cytometry using human specific antibodies. Tissues were collected for immunohistochemistry, assessment of fibrosis and spleen weight. DNA was extracted from whole bone marrow and a qualitative PCR was performed to determine the presence of the JAK2-V617F or CALR-mutations. Results Three out of six samples generated a human graft of ≥20% human CD45+ cells, while the three other samples generated engraftment of 0.1-3%. The human graft was mainly composed of myeloid cells and monocytic differentiation was observed. In 2/2 experiments analysed, a JAK2-V617F and a CALR type 2 mutation were detected in the bone marrow of engrafted mice transplanted with the respective patient sample. Development of fibrosis was not observed three months post-transplantation, presumably due to the short observation time. Spleen weight was significantly increased in mice engrafted with human MF and was the consequence of increased murine extramedullary hematopoiesis. We then aimed to identify factors that could predict human MF engraftment in TPO-SIRPα mice. While neither the DIPSS, nor the presence of myeloid precursors in the peripheral blood (blasts excluded) were predictive of human MF engraftment, the presence of blasts in the peripheral blood significantly correlated with engraftment potential. Importantly, none of the patients developed acute leukemia during follow-up. Finally, preliminary evidence suggests that TPO-SIRPα mice are more supportive of human MF engraftment than NSG mice. Conclusions This is the first xenograft model that supports robust engraftment of human peripheral blood MF cells and further supports a role for TPO in the pathogenesis of MF. In contrast to previous models TPO-SIRPα mice strongly promote myeloid rather than lymphoid engraftment. The tight correlation between the presence of peripheral blood blasts and the human MF engraftment potential suggests that human MF stem cells reside in the blast population. In summary, the xenograft model presented here constitutes a powerful tool to assess heterogeneity regarding MF biology, microenvironmental dependence of the MF clone and likely also therapeutic response of MF in vivo. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5765-5765
Author(s):  
Fernanda I Della Via ◽  
Rodrigo Naoto Shiraishi ◽  
Santos Irene ◽  
Karla P Ferro ◽  
Myriam Salazar-Terreros ◽  
...  

Background: (-)-Epigallocatechin-3-gallate (EGCG) is a gallate ester obtained by the condensation of gallic acid with the (3R)-hydroxy group of (-)-epigallocatechin. This component, extracted from green tea, has multiple effects on signal transduction pathways and enzyme activities which could enhance apoptosis and suppress of cell proliferation, invasion, angiogenesis and metastasis in cancers. This study aims to evaluate the effect of EGCG in an experimental model of leukemia (PML-RARα mice). Methods: NOD.CB17-Prkdcscid/J mice (12-16 weeks old) received 2Gy irradiation followed by transplantation of leukemia cells obtained from hCG-PML-RARα transgenic mice by i.v. injection in the caudal vein. Establishment of disease was confirmed at day 12 through presence of leukocytosis (>30x103/µL), and/or anemia (<10g/dL), and/or thrombocytopenia (<500x103/µL), associated to the presence of blasts in blood. At 12th day, mice (n=10/group) were randomly selected to receive EGCG (25mg/kg/day) (Cayman Chemical Co., Michigan, USA) or vehicle i.p. for five consecutive days. Mice were then sacrificed and peripheral blood, bone marrow and spleens were collected for flow cytometry and western blot analysis. All experiments were approved by the Ethical Committee for Animal Experimentation of Institution (nº3995-1/A). Results: Hematological analysis revealed that EGCG treatment reversed leukocytosis (54.09±57.71 vs 11.45±16.08; p=0.0371), anemia (9.60±1.50 vs 11.32±1.36; p=0.0155) and thrombocytopenia (238.5±146.43 vs 475.8±247.91; p=0.0179) and prolonged survival of PML/RARα mice (13 vs 15 days; p=0.0017). Notably, EGCG reduced leukemia immature cells (CD45+CD34+) (8.04±2.49 vs 5.13±1.58; p=0.0060) and promyelocytes (CD45+CD117+) (73.54±12.85 vs 56.26±15.93; p=0.0157) in bone marrow of mice whereas increased mature myeloid cells (CD11b+Gr-1+) (6.15±3.00 vs 14.60±7.83; p=0.0051), possibly by inducing cellular differentiation. These results were corroborated by the reduction in promyelocytes (45.97±11.72 vs 30.29±11.01; p=0.0154), and the increase in neutrophils (CD45+Gr-1+) (38.20±14.34 vs 54.88±14.25; p=0.0178) and monocytes (CD45+CD11b+) (60.22±18.87 vs 76.79±15.59; p=0.0463) detected in peripheral blood. We then evaluated the effect of EGCG on cellular differentiation by studying degradation of PML/RARα oncoprotein. EGCG increased the percentage of cells with aggregated PML bodies stain in the bone marrow of PML-RARα mice, suggestive of higher degradation of oncoprotein, parallel to a reduction in PIN1 expression in bone marrow cells. Higher intracellular levels of reactive oxygen species (ROS) were also detected in leukemia immature cells (2101±1025 vs 3544±614; p=0.0051), promyelocytes (1765±1176 vs 3090±1282; p=0.0271) and neutrophils (1830±1093 vs 3532±1157; p=0.0033) of bone marrow. These results are consistent with literature data demonstrating that the ablation of PIN1 and/or induction of ROS could trigger PML/RARα degradation. EGCG has been reported to inhibit PIN1, a peptidyl isomerase overexpressed and/or over activated in human cancers, which is described as a key target in PML/RARα. Furthermore, apoptosis was detected in spleen cells of PML-RARα mice (5.97±4.19 vs 10.42±3.54; p=0.0197) in parallel to increased expression of BAX, reduced expression of BCL-2, and reduction of spleen weight (0.5587±0.05 vs 0.3949±0.10; p=0.0085). Conclusion: Collectively, our results support further evaluation of EGCG in clinical trials for acute myeloid leukemia. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 100-100
Author(s):  
Hind Medyoup ◽  
Maximilian Mossner ◽  
Johann-Christoph Jann ◽  
Florian Nolte ◽  
Christian Eisen ◽  
...  

Abstract Introduction Myelodysplastic syndromes (MDS) are clonal hematologic disorders characterized by ineffective hematopoiesis, dysplasia and increased risk of progression to acute myeloid leukemia. The development of targeted therapies for MDS has been lagging behind and remains a key clinical challenge that has been hampered, at least in part, by difficulties to establish in vivo model systems that recapitulate disease heterogeneity and complexity. Attempts to generate a xenograft model of lower risk MDS have only achieved low and often transient levels of engraftment. Recent evidence from mouse studies suggests that MDS is a disease in which both the hematopoietic system and the bone marrow microenvironment might be involved. Thus, we hypothesized that a specific MDS microenvironment might be required for the successful modeling of low risk MDS in mice, proposing a dependency of the “disease propagating cells“ on their corresponding niche cells in human MDS. Methods Our study is based on xenotransplantation of material from 19 MDS patients classified as follows: IPSS low risk (n=6), intermediate-1 risk (n=13), WHO 2008 classification: MDS 5q- (n=7), MDS RCMD (n=7), MDS RAEB I (n=3), MDS-U (n=1), MDS RARS (n=1). MDS CD34+ cells were co-injected with patient-derived mesenchymal stromal cells (MSCs) directly in the bone marrow cavity (i.f) of NOD.Cg-Prkdscid Il2rgtm1Wjl/Szj (NSG) or NSGS (NSG mice expressing human SCF, IL3 and GM-CSF) mice. Molecular tracking of MDS cells was carried out by copy number analysis (Affymetrix SNP 6.0 Arrays), metaphase cytogenetics, interphase FISH, Roche 454 deep sequencing and pyrosequencing of known mutations. Mice were analyzed after a minimum of 16 weeks post transplantation. Results We show that co-injection of MDS CD34+ cells with their corresponding MSCs leads to significant and long-term engraftment of over 77% of the MDS patients analyzed, both in NSG (10/13 patients, range hCD45+= 1-18%) and NSGS mice (7/8 patients, range hCD45+=2.2-74%). In contrast, absence of MSCs or co-injection of healthy age-matched MSCs only gave rise to limited engraftment in NSG mice (2/7 patients (hCD45+=1-3.8%) and 1/2 patients (hCD45+=2%), respectively). Transplanted samples exhibited a clear myeloid bias and significant engraftment of cells with progenitor (CD34+CD38+) and stem cell phenotype (CD34+CD38-) that could be serially transplanted. In addition, presence of morphologically dysplastic cells was readily detectable in NSGS mice. Importantly, molecular analysis of the engrafted cells confirmed their “diseased” origin as they carried identical lesions to the ones present in the original MDS patient. Furthermore, we could demonstrate that disease-propagating stem cells in lower risk MDS exclusively reside within the lin-CD34+CD38- stem cell fraction. Finally, RNA sequencing analysis comparing MDS and age-matched healthy control MSCs revealed altered expression of key genes involved in cellular adhesion, extra-cellular matrix (ECM) remodeling and cellular cross-talk in diseased MSCs, strongly supporting the notion of a complex interplay between MDS hematopoietic cells and their corresponding stroma. In addition, patient MSCs exhibited clear molecular features of fibrosis, a clinical feature often associated with MDS. Conclusion In this study we have identified patient-derived MSCs as a critical functional component of lower risk MDS. Together with MDS stem cells, these patient MSCs form a functional stem cell-niche unit, which allows the propagation of the disease in a xenograft recipient. The striking changed expression in diseased MSCs of genes involved in processes like cytokine-cytokine receptor interaction, cellular adhesion, ECM remodeling as well as hypoxia further suggests that diseased MDS cells might alter the function of the normal HSC niche into one that can support the requirement of MDS cells. Studying the interaction of MDS stem cells and MSCs at the cellular and molecular level will provide a platform for unraveling the molecular basis of clonal dominance in MDS as well as allow the design of targeted strategies aimed to disrupt the MDS stem cell-MSC niche interactions. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4271-4271
Author(s):  
Annie L. Oh ◽  
Dolores Mahmud ◽  
Vitalyi Senyuk ◽  
Elisa Bonetti ◽  
Nadim Mahmud ◽  
...  

Abstract The aims of this study were to analyze the role of T cells on the engraftment of allogeneic CD34+ cells after transplantation in immunodeficient nonobese diabetic/ltsz-scid/scid (NOD/SCID) IL2 receptor gamma chain knockout (NSG) mice and to test the in-vivo ability of abatacept (CTLA4-Ig) in preventing graft failure. Human CD34+ cells (0.2x106 cells/animal) were co- transplanted with allogeneic CD3+ T cells into sublethally irradiated NSG mice at ratios ranging from 1:50 to 1:0.5, or without T cells as a control. The engraftment of huCD45+ cell subsets in the bone marrow and spleen was measured by flow cytometry after 4-8 weeks. An expansion of T cells without engraftment of CD34+ cells was detected in each group of mice transplanted with CD34:T cells at ratios ≥ 1:0.5. To test whether T cells prevented any engraftment of CD34+ cells, or caused rejection after initial CD34+ cell homing in the bone marrow, kinetics experiments were performed by analyzing the marrow and spleen of mice at 1,2 or 4 weeks after transplant of CD34+ and T cells at 1:1 ratio. These experiments showed that at two weeks after transplant, CD34+ cells had repopulated the bone marrow but not the spleen, while T cells were found primarily in the spleen. Instead, in mice sacrificed at 4 weeks after transplant the marrow and the spleen contained only T cells and the CD34+ cells had been rejected. Based on our previous in-vitro studies showing that CD34+ cell immunogenicity is mainly dependent on B7:CD28 costimulatory signaling, we then tested whether costimulatory blockade with abatacept (CTLA4-Ig, Bristol Myers Squibb) would block stem cell rejection. Three groups of mice were transplanted with CD34+ and allo-T cells at 1:1 ratio and injected with Abatacept at 250 ug i.p. every other day from: a) day -1 to +28, b) day -1 to day +14 or c) day +14 to +28, then the animals were sacrificed at day +56 (8 weeks) after transplant to assess the engraftment. In Group a) the overall engraftment of huCD45+ cells was only <10%, but Abatacept completely prevented T cell-mediated stem cell rejection with >98% huCD45+ cells of myeloid or B cell lineage and <1% T cells in the marrow and spleen. In Group b) 70% of huCD45+ cells both in the marrow and spleen were T cells, and the remaining fraction of myeloid or B cells were derived from CD34+ cells. In Group c), instead, 100% of huCD45+ cells were T cells, with complete rejection of CD34+ cells. T cells recovered from the spleen of mice in groups b) and c) were also tested as responders in MLC stimulated with the original CD34+ cells and showed a brisk proliferation, consistent with lack of tolerance. Finally, another group of mice that received Abatacept from day -1 to + 28 was rechallenged with a boost of CD34+ cells on day +28 to test whether the low CD34+ cell engraftment was secondary to a latent rejection or partial stem cell exhaustion. The CD34+ cell boost resulted in a full hematopoietic recovery with 37% huCD45+CD3- cells, including myeloid and B cells, as well as CD34+ cells in the bone marrow and spleen. In this preclinical xenograft model we demonstrated that costimulatory blockade with Abatacept at the time of allogeneic transplant of human CD34+ cells can prevent T cell mediated rejection provide the basis for the future non-myeloablative protocols for incompatible stem cell transplantation. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4996-4996
Author(s):  
Elena E. Khodunova ◽  
Elena N Parovichnikova ◽  
Irina V. Galtzeva ◽  
Sergey M. Kulikov ◽  
Valeri G Savchenko

Abstract Abstract 4996 It was shown that drug resistance, poor-risk cytogenetics and poor prognosis in AL is associated with high level of Bcl-2 expression and low Bax/Bcl-2 ratio (<0,3). Fas-antigen (CD95) as a protein triggering the extrinsic apoptotic pathway is differently expressed on hematopoietic precursors. More immature CD34+/CD38- AML blast cells have lower expression of Fas/Fas-L and lower Fas-induced apoptosis than CD34+/CD38+cells. CD34+/CD38− leukemia precursors also have a reduced sensitivity to daunorubicin in vitro and increased expression of multidrug resistance genes (mrp/lrp). CD34+ leukemia cells have not yet been properly characterized regarding the expression of angiotensin converting enzyme (ACE) which regulatory influence on hematopoiesis is now beeing extensively investigated. ACE expression on blast cells is high, but it's still unknown how CD34+ACE+ leukemia cells behave after chemotherapy. Recent publications indicate that CD34+ACE+ hematopoietic precursors transplanted into NOD/SCID mice contribute 10-fold higher numbers of multilineage blood cells than their CD34+ACE- counterparts. We have studied the dynamics of Bcl-2, Bax, CD95 and ACE expression on CD34+ cells in peripheral blood (PB) and bone marrow (BM) in AL pts during treatment. PB and BM samples were collected before and on +36 day after chemotherapy. The antigens were detected by flow cytometry using monoclonal antibodies. We calculated 10 000 cells in each sample. 19 pts were included in the study: 10 - AML and 9 - ALL. The control group comprised 8 healthy donors. At time of diagnosis there were 40±5,7% of CD34+ cells in BM and 26±4,9% - in PB. There was no significant difference between AML and ALL. CD34+ cells in BM and PB of healthy donors constituted 1,6% and 0,27%, respectively. After induction therapy (+36 day) CD34+ cells decreased in BM to 6,1%±3,3 (p=0,0001), in PB to 3,7%± 2,7 (p=0,0008) in all pts. The data on antigens expression on CD34+ cells of BM and PB are presented in table 1 CD34+/Bcl-2+ CD34+/Bax+ CD34+/CD95+ CD34+/ACE+ BM PB BM PB BM PB BM PB AML pts n=10 0 day 38±11,6* 41±14 24,4±7,9 29,2±7,6* 16,4±8,5 23,2±7,8 21,7±9,5 20,8±8,7* 36 day 13,5±3,4** 23,7±5** 46,2±11,5 50,3±11 19,9±5,5 36,4±10 34±6,6 35±9,2** ALL pts n=9 0 day 36±11 33,7±12 46,2±9,4 37,4±3,7* 3,4±1,1* 7,1±2,5* 41±10,9 33,2±9,7* 36 day 18,4±5,8 26±8,9 38±11,8 40,5±10 26,2±9,1** 40,9±9,2** 34±10 62,8±10** Donors n=8 11,7±1,6 26,1±5,9 22,8±4 67,8±6,7 13,4±3,2 47,7±11,6 28±5,3 68,2±10,2 * − p<0.05 compare with donors ** − p<0.05 compare with day 0 CD34/Bcl-2 expression in BM in AML pts is significantly higher (p=0,04) at the diagnosis comparing with donors. CD34/Bcl-2 expression in PB in AML pts and in BM and PB in ALL pts is higher too, but not significantly. This expression level decreased substantially in BM and PB in AML pts on +36 day comparing with day 0 (p<0,05). We did not found significant changes in ALL pts. CD34/Bax expression in PB is significantly lower (p=0,003) both in AML and ALL pts in comparison with donors. In AML, not in ALL, chemotherapy caused augmentation of Bax expression in CD34+ BM and PB cells on +36 day. BM and PB CD34+ cells in donors had different expression characteristics of Bcl-2 and Bax, demonstrating much higher level of pro- and antiapoptotic markers in PB cells. On the contrast CD34+ leukemia cells in BM and PB had similar characteristics regarding CD34/Bcl-2 and CD34/Bax expression. This fact demonstrates the heterogeneity of donor CD34+cells in BM and PB and points that leukemia CD34+cells in BM and PB are rather similar. CD95 expression on CD34+ BM and PB before treatment is significantly lower (p=0,01, p=0,008) in ALL pts in comparison with donors, and this expression level increased after chemotherapy (p<0,05). CD34/CD95 expression in AML pts is similar with donors, and we didn't find changes after treatment. CD34/ACE coexpression in BM cells of leukemia pts and donors did not differ much at any time of evaluation. But CD34/ACE expression in PB cells of AML and ALL pts was much lower (p<0,05) than in donors and substantially increased on the day 36. So, our data demonstrate that Bcl-2, Bax, CD95 and ACE expression on CD34+ cells in AL pts and donors significantly differs. The chemotherapy provokes critical changes in CD34/CD95 expression in BM and PB in ALL pts, CD34/Bcl-2 expression in AML pts and ÑÂ34/ACE expression in PB in all AL pts. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4279-4279
Author(s):  
Paolo Catarsi ◽  
Francesca Cordero ◽  
Giulio Ferrero ◽  
Marco Beccuti ◽  
Valentina Poletto ◽  
...  

Abstract An important issue in myeloproliferative diseases research is to test the hypothesis that in the neo-angiogenesis, which is observed in the spleen and bone marrow of patients, involves endothelial cells derived from the neoplastic clone. In this study we analyzed the gene expression profile of 138 genes in CD34+ hematopoietic cells from the spleen and peripheral blood of patients with myelofibrosis (MF) and healthy individuals (HI). These genes have been selected among those that characterize the neoangiogenic gene signature or belonging to deregulated expression pathways in MF, and are listed in Table1. By using quantitative reverse transcription-PCR (RT-qPCR), we measured the expression levels of 141 targets and 5 reference genes in CD34+ cells isolated by immunomagnetic method from the spleen and peripheral blood of 4 patients and 3 HI. For calculation of the statistical significance of the differences we used the t-test for unpaired samples. A p<0.05 was considered to be statistically significant. All data analyses were performed with GenEx (version 6.1, MultiD). To characterize the differentially expressed genes obtained in each comparison, the lists of genes were analyzed through several tools, i.e. String, Enrichr and GSEA analysis. The comparison between spleen CD34+ cells and circulating CD34+ cells reveal a group of common genes in both patients and heathy donors. Those genes are significantly overexpressed in spleen. Some of the common genes are involved in the regulation of cell migration and in the development of blood vessels were significantly overexpressed in splenic CD34+ cells compared to circulating CD34+ cells. However, we observed that many of the genes implicated in the development of the vessels were under-expressed in CD34+ cells isolated from the spleen of patients compared to those of HI. The most significant upregulated genes in CD34+ splenic cells from patients included transcripts (GATA1, HBB, TAL1, GATA2, PTGS1) belonging to the molecular signature of CD34+ cells isolated from the bone marrow (BM) of patients with chronic myeloid leukemia (Diaz-Blanco E. et al., Leukemia 2007). Another group of upregulated genes (GATA1, TAL1, ITGB3, GATA2, PF4) are also identified in a study designed to characterize the genes essential to the development of megakaryocytes (Tenedini et al. Blood 2004). These two groups of genes are part of an expression pattern characteristic for immature stem cells as well as megakaryocyte-erythrocyte progenitor cells. Another group of genes overexpressed in patients spleens (CD34, ANGPT1, PF4, GATA2, PTGS1), which includes some of the above mentioned genes, has been observed in a comparison between circulating CD34+ cells from patients with myelofibrosis, and CD34 + cells isolated from the bone marrow of HI (Guglielmelli P. et al. Stem Cells 2007). Among the underexpressed genes in the spleen of patients we mention CXCR4, in keeping with previous observations. Interestingly, among the aforementioned genes, GATA1 and GATA2 genes are overexpressed in granulocytes of patients with MPNs regardless of the JAK2/CALR mutational status whereas PTGS1 is overexpressed in the JAK2-V617F homozygous and CALR-mutated granulocytes (Rampal et al. Blood 2014). We focused our attention on PTGS1 because its well-known activity in regulating angiogenesis, which can be inhibited in vitro by treatment with aspirin (Tsujii, M. et al. Cell 1998). To explain the mechanism of action of low-doses aspirin in this context, it has been proposed a model that involves permanent inactivation of PTGS1 in platelets. Indeed, PTGS1 is the only cyclooxygenase isoenzyme present in platelets. Moreover, Dixon and colleagues (Dixon, D.A. et al. JCI 2006), demonstrated that activated platelets induced the expression of PTGS2 in monocytes. It is believed that the synthesis of prostaglandin E2 by PTGS2 in tissues, is linked to an increment of angiogenesis and cell proliferation, and to a reduction of apoptosis. According to this concept, our data point toward a model in which, in the spleen of patients with MF, an altered hematopoietic stem cell differentiation could induce an inflammation-mediated angiogenesis through the overexpression of PTGS1 and a consequent induction of PTGS2 in cells of the splenic microenvironment. Table Table. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 307-307 ◽  
Author(s):  
Shivam Rai ◽  
Nils Hansen ◽  
Hui Hao-Shen ◽  
Stefan Dirnhofer ◽  
Nageswara Rao Tata ◽  
...  

JAK2-V617F is the most frequently recurring somatic mutation in patients with myeloproliferative neoplasm (MPN), but it can also be found in healthy individuals with clonal hematopoiesis of indeterminate potential (CHIP) with a frequency much higher than the incidence of MPN. This suggests that the acquisition of the JAK2-V617F is not the rate-limiting step and other factors might be required for the expansion of the JAK2 mutated clone and initiation of MPN disease. Chronic inflammation is a hallmark of advanced MPN and is associated with progression to myelofibrosis and AML. Interleukin-1β (IL-1β) is one of the master regulators of the inflammatory state and its aberrant activity has been implicated in various pathological diseases including MPN. Here we focused on the early stages of MPN disease initiation and examined the role of IL-1β in this context. We hypothesized that IL-1β mediated inflammation may promote early expansion of the JAK2 mutant clone to reach a critical clone size capable of initiating MPN. We used a genetic approach and crossed IL-1β knockout (IL1β-/-) mice with our tamoxifen inducible SclCreER;JAK2-V617F (VF) mice, generating a triple mutant SclCreER;JAK2-V617F;IL-1β-/-(VF;IL1β-/-) line. We then transplanted two million bone marrow (BM) cells from VF and VF;IL1β-/- mice into lethally irradiated wildtype (WT) orIL1β-/- recipients. Complete blood counts monitored every 4 weeks for up to 32 weeks post transplantation showed reduced platelet, neutrophil, leukocyte and monocyte counts in mice transplanted with VF;IL1β-/-as compared to VF. Furthermore, terminal analysis at week 16 and 32 revealed reduced splenomegaly and bone marrow fibrosis in the mice receiving VF cells lacking IL1β. This experiment shows that IL1β plays an important role in MPN pathogenesis in this mouse model. To test the hypothesis that IL1β favors clonal expansion during MPN disease initiation, we performed competitive dilution assays by mixing BM cells from VF or VF;IL1β-/-mice that also co-express the GFP protein as a reporter (VF;GFP or VF;IL1β-/-;GFP) with BM cells from IL1β-/- mice in 1:100 ratio and transplanted into lethally irradiated WT recipients (Figure 1A). Successful engraftment was defined by presence of &gt;1% GFP+ cells within Gr-1+ granulocytes in peripheral blood (PB) at week 18 after transplantation. In mice transplanted with VF;GFP, we found engraftment in 25 of 29 (86%) recipients whereas in mice transplanted with VF;IL1β-/-;GFP, only 18 of 29 (62%) recipients showed engraftment. Moreover, 10 of 25 (40%) mice engrafted with VF;GFP developed MPN at 24 weeks after transplantation as compared to only 2 of 18 (11%) mice engrafted with VF;IL1β-/-;GFP cells. GFP chimerism measured every 6 weeks in peripheral blood (PB) from erythroid (Ter119+), megakaryocytic (CD61+) and granulocytic lineages (Gr-1+) was significantly reduced in mice transplanted with VF;IL1β-/-;GFP compared to mice transplanted with VF;GFP cells (Figure 1A), suggesting the capacity to produce IL-1β protein by the VF cells was promoting the expansion of the clone and MPN manifestation.To define the relative contributions of hematopoietic and non-hematopoietic cell derived IL-1β in promoting MPN initiation, we performed competitive dilution assays in IL1β-/-recipients (Figure 1B). We detected engraftment in 27 of 30 (90%) IL1β-/-recipients transplanted with VF;GFP and 27 of 33 (82%) mice transplanted with VF;IL1β-/-;GFP. Furthermore, 9 of 27 (33%) mice engrafted with either VF;GFP or VF;IL1β-/-;GFP developed MPN at 24 weeks after transplantation. However GFP chimerism in Ter119, Gr-1 and CD61 was lower in mice transplanted with VF;IL1β-/-;GFP compared to mice transplanted with VF;GFP (Figure 1B). We further looked at plasma IL-1β protein levels by ELISA (Figure 1C). Interestingly, we found that IL-1β protein levels were also reduced in WT mice transplanted with VF;IL1β-/-;GFP donor cells, indicating that the non-hematopoietic WT cell cannot compensate for the deficiency of IL-1β in the VF clone. Overall, our results demonstrate that IL-1β favors early clonal expansion and show that IL-1β produced by the JAK2 mutant cells is required for optimal MPN disease initiation. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1565-1565
Author(s):  
Sunil Iyengar ◽  
Linda Ariza-McNaughton ◽  
Andrew James Clear ◽  
Amy Roe ◽  
Debra Lillington ◽  
...  

Abstract Abstract 1565 Background: The relatively low incidence of MCL (0.55 per 100,000) poses a challenge for effective evaluation of novel therapies in patients affected by this aggressive and incurable lymphoma. A xenograft model of human MCL provides a useful model for pre-clinical evaluation of novel drugs, rational drug combinations and biomarkers. The only mouse xenograft model of primary human MCL reported was established by injecting CD19 selected PBMCs in a subcutaneously implanted human embryonic bone graft in SCID mice and SCID mice without subcutaneous bone grafts did not show engraftment. NOD/SCID/IL2Rγ chain null (NSG) mice, which lack mature T or B cells and are also deficient in NK cells, permit engraftment of a wider range of primary human cells compared to SCID mice. In view of recent reports of successful engraftment of human CLL in NSG mice, we hypothesised that primary human MCL can be established in these mice. Methods: We initially introduced luciferase transduced Jeko-1 cells at 2 concentrations – 0.5 and 2 million cells by tail vein injection of 8 to 12 week old γ-irradiated (3.75 Gy) NSG mice in an attempt to track the kinetics and distribution of MCL cells. Bioluminescent imaging (BLI) following injection of luciferin was performed weekly for 4 weeks. We then injected NSG mice (4 replicates) with 107, T-cell depleted, previously cyropreserved human MCL cells from 3 patients. Mice were bled at 3, 6 and 12 weeks and flow cytometry was performed on PBMCs for human CD45, CD5 and CD20. Mice were sacrificed at 20 weeks and immunohistochemistry (IHC) for human CD20 and cyclin D1 was performed on formalin fixed paraffin embedded spleen, ileo-caecal junction and liver while FACS for human CD45, CD5 and CD20 was performed on bone marrow cells flushed from the femur. Tissues harbouring CD20 and cyclin D1 positive cells were stained with Ki-67 to assess proliferation and FISH for t(11;14) was performed on fresh cells isolated from the spleen to further confirm engraftment. Results: NSG mice injected with Jeko-1 cells showed rapid engraftment at both concentrations (0.5 and 2 million) on assessment with BLI, with a more rapid progression after 3 weeks in mice injected with 2 million cells. Mice had to be sacrificed at 4 weeks because of illness. Bioluminescence was seen primarily in the bone marrow, spleen and along the spine. Consistent engraftment was also seen in all mice injected with sample 1 - PBMCs from a patient in 1st relapse with blastoid morphology, classic immunophenotypic features and the IgH:CCND1 translocation. CD5 and CD20 double positive cells were consistently detected at 6 and 12 weeks in the peripheral blood of all 4 mice examined. Mice were not visibly ill at 20 weeks but had gross splenomegaly at sacrifice. No lymph node or abdominal masses were found. A clear human CD5/CD20 population was found on flow cytometry of bone marrow cells. The splenic architecture was disrupted in mice that engrafted, compared to those that did not and a heavy infiltration of CD20 and cyclin D1 positive cells was found with proliferation estimated at 35–40% by Ki-67 staining. Interphase FISH on fresh cells derived from the spleen showed the IGH/CCND1 [t(11;14)] rearrangement in all cells examined. Scattered CD20 positive cells were observed in the liver but no polyps or submucosal infiltration was found in the ileo-caecal regions of these mice. NSG mice injected with samples 2 and 3 had no evidence of engraftment in peripheral blood, bone marrow or other tissues. Conclusion: Our studies demonstrate that a mouse model of human MCL can be established in NSG mice and are encouraging for developing this model for pre-clinical evaluation of novel drugs. The lymphoma cells that engrafted were from a patient with relapsed, blastoid MCL suggesting that a more aggressive phenotype may favor engraftment as seen with AML xenografts in NSG mice. Ongoing studies are examining additional patient samples and the need for T cell depletion. This model will also provide an opportunity to investigate the role of tumor-initiating side populations in this disease. Disclosures: Gribben: Celgene: Honoraria; Roche: Honoraria; Pharmacyclics: Honoraria; GSK: Honoraria; Mundipharma: Honoraria; Gilead: Honoraria.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 5672-5672
Author(s):  
Chi Hua Sarah Lin ◽  
Beth Shaz ◽  
Rona Singer Weinberg

Abstract Introduction Reconstitution of donor-derived immune system after allogeneic hematopoietic stem cell transplantation (HSCT) is essential for recovery and long-term survival. Despite routine use of human umbilical cord blood (hUCB) as a stem cell source for allogeneic HSCT, much remains unknown regarding the kinetics of immune recovery and correlation with different transplant cell dosages. To study the hUCB repopulating potential, different hUCB CD34+ cell dosages were transplanted into immune deficient NSG mice; hematopoietic cells were then collected and engraftment was analyzed. Methods NOD/SCID/IL-2Rγnull recipient (NSG) mice (Jackson Laboratories, Bar Harbor, ME) were kept in pathogen-free facilities. CD34+ cells were isolated from a pool of six hUCB donors using a CD34+ microbead kit (Miltenyi Biotec). Each sublethal irradiated (220 or 300 cGy) 8 week old female NSG mice received either low dose (15x103, N=15) or high dose (75x103, N=15) CD34+ cells transplanted intravenously via retro-orbital route. Animal experiments were performed in accordance with Institutional Animal Care and Use Committee guidelines. Statistical analysis was performed with Prism software (GraphPad Software, Inc) and Excel. Data are presented as mean ± standard error of the mean (SEM). Results To determine the effects of hUCB CD34+ cell dosages on the rate of engraftment, NSG mice were transplanted with low doseor high dose CD34+ cells. The transplanted CD34+ cell dosages were comparable to clinical dosages based on body weight (Mavroudis et al. 1996). The engrafted cells were analyzed for expression of surface markers that define human hematopoietic cells. During the follow up period of up to 18 weeks, the high dose infused group had increased hUCB engraftment compared with the low dose infused group in peripheral blood (Fig 1A), bone marrow (Fig 1B & 1C) and spleen (Fig 1D), which is consistent with reported clinical observations that infused cell dosage is inversely correlated with time to engraftment (Migliaccio et al. 2000 Blood). Interestingly, we observed different lymphoid subset frequencies between low and high dose infused groups at the post-engraftment stage (18 weeks post transplantation) (data not shown). To investigate different lymphoid subset engraftment frequencies in low and high dose hUCB transplanted recipient mice at early engraftment stage, peripheral blood and hematopoietic organs were collected and analyzed up to 10 weeks post transplantation. The low dose infused group had significantly lower CD3+ (T cells) and CD56+ (NK cells) frequency in peripheral blood at 4 and 8 weeks (Fig 2A & 3A). More importantly, CD3+ (T cells) frequency was close to non-detectable in the bone marrow and spleen in the low dose infused group (Fig 2B & 2C), and CD56 (NK cells) frequency was decreased in the low dose infused group compared with the high dose infused group (Fig 3B & 3C). The absolute CD3+ and CD56+ number, displayed as fold difference, were even more dramatically decreased in the femur (Fig 2D & 3D) and the spleen (Fig 2E & 3E) of low dose infused group. Because of the substantial difference in T cell subset frequencies between the two dosage groups in bone marrow and spleen, thymuses were collected and analyzed to study T cell development and maturation. Engraftment of hCD45+ cells in the thymuses were observed in 10 out of 15 animals (66.7%) in the low dose infused group and 12 out of 14 animals (85.7%) in the high dose infused group. Interestingly, in animals with high hCD45+ frequency, the total thymocyte CD3+ frequency was lower in the low dose infused group (Fig 4A). Additionally, the low dose infused group had lower CD3+CD4+ T cell frequency (Fig 4B) and higher CD3+CD4+CD8+ T cell frequency (Fig 4C), suggesting low dose infused group had a decreased mature T cell population and increased immature T cell population in the thymus. In contrast, the low dose hUCB CD34+ cells infused group had increased hCD19 (B cells) frequency in the peripheral blood, bone marrow and spleen (Fig 5A-5C), while the absolute hCD19 (B cells), displayed as fold difference, did not show a statistically significant difference between the two groups (Fig 5D & 5E). Conclusions In summary, our findings suggest that (1) transplanted hUCB cell dosage is inversely correlated with time to engraftment (2) low transplanted hUCB cell dosage resulted in skewed immune cell population which may contribute to delayed immune recovery after allogeneic HSCT. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3218-3218
Author(s):  
Stefan Brooks ◽  
Samuel B Luty ◽  
Hew Yeng Lai ◽  
Lacey R Royer ◽  
Sarah J Morse ◽  
...  

Abstract BACKGROUND: A germline JAK2V617I mutation has recently been identified in a family with hereditary thrombocytosis (Mead et al, NEJM 2012). Like acquired MPN, family members with JAK2V617I have thrombocytosis and megakaryocytic hyperplasia in the marrow with increased risk of thrombosis. But unlike acquired MPN, individuals with this germline mutation do not develop a fibrotic bone marrow, splenomegaly, or transform to acute leukemia. Why germline JAK2V617I recapitulates some aspects but not others of the MPN phenotype in humans is unclear. To delineate the differences between JAK2V617F and JAK2V617I we compared the phenotype of mice with hematopoietic cells expressing JAK2V617F or JAK2V617I. METHODS AND RESULTS: Lethally irradiated C57B/6 mice were transplanted with bone marrow cells infected with retrovirus expressing JAK2V617F, JAK2V617I, or empty MSCV-IRES-GFP (MIG) vector. As expected, mice transplanted with JAK2V617F-expressing cells developed erythrocytosis and leukocytosis, whereas mice transplanted with JAK2V617I-expressing cells had peripheral blood counts similar to empty vector mice. Humans with germline JAK2V617I do not display constitutive activation of the kinase, but they do demonstrate cytokine hyper-responsiveness as evidenced by increased phosphorylation of STATs at low concentrations of ligand. We compared phosphorylated STAT5 in peripheral blood of mice transplanted with JAK2V617I, JAK2V617F, and MIG empty vector following stimulation with increasing concentrations of GM-CSF. At all concentrations of GM-CSF tested JAK2V617I and JAK2V617F-expressing cells had exaggerated phosphorylation of STAT5 as compared to MIG empty vector mice. We also measured phospho-STAT3 and STAT5 in unstimulated bone marrow and spleen from each mouse at time of euthanasia, there was no difference between JAK2V617I and MIG empty vector mice. JAK2V617F mice did demonstrate phosphorylation of STAT3 and STAT5 in the absence of GM-CSF, confirming the ability of JAK2V617F but not JAK2V617I to constitutively activate downstream signaling pathways. Next, to evaluate for histologic evidence of MPN and assess spleen size, all mice were euthanized at 120 days post-transplant. JAK2V617F mice had splenomegaly as expected, spleens from JAK2V617I mice appeared larger than empty vector mice, but spleen weight was not statistically different (p>0.05). While JAKV617I mice had increased cellularity of their marrow with increased numbers of megakaryocytes as compared to empty vector mice, this was not nearly to the extent of JAK2V617F mice. Mild fibrosis was seen in JAK2V617I mice, JAK2V617F mice had severe reticulin fibrosis in the marrow as expected. In the spleen architecture was preserved in the JAK2V617I mice, whereas in the JAK2V617F mice splenic architecture was disrupted by invasion of myeloid cells including megakaryocytes. To identify whether JAK2V617I affects the frequency of stem and progenitor cells or expands mature myeloid lineage cells we measured the frequency of hematopoietic stem cells, myeloid progenitors, and mature myeloid populations in JAK2V617F, JAK2V617I, and MIG empty vector. The bone marrow of JAK2V617I mice contained an increased percentage of GMP and MEP populations as compared to both the MIG empty vector and the JAK2V617F mice. Mature granulocyte (Gr-1+CD11b+) and erythroid (Ter119+) populations were expanded in the bone marrow and spleen of JAK2V617F but not JAK2V617I mice. CONCLUSIONS: These data demonstrate that the JAK2V617I mouse model recapitulates the effect of germline expression of JAK2V617I seen in humans: it results in cytokine hyper-responsiveness without the ability to constitutively activate downstream signals in the absence of ligand. Why JAK2V617F is so exquisitely conserved in acquired MPN is still unknown. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 795-795
Author(s):  
Angela G. Fleischman ◽  
Karl J. Aichberger ◽  
Curtis L Petersen ◽  
Shirin Doratotaj ◽  
Thomas G Bumm ◽  
...  

Abstract Abstract 795 Elevated levels of pro-inflammatory cytokines such as TNF-alpha (TNF) have been implicated in the constitutional symptoms commonly seen in JAK2 V617F MPN. However, it is unclear to what extent they contribute to the disease process itself. We hypothesized that JAK2 V617F may confer a selective advantage on hematopoietic progenitors residing in the high cytokine milieu uniquely present MPN patients, focusing on the pro-inflammatory cytokine TNF. We used ELISA and qPCR to measure TNF in plasma and neutrophils of MPN patients and normal controls. All MPN subtypes had increased plasma concentrations of TNF, with primary myelofibrosis, polycythemia vera and essential thrombocythemia displaying 6, 4 and 2 fold higher mean concentrations of plasma TNF as compared to normal controls, respectively. Median neutrophil TNF mRNA was 2 fold higher in PV patients as compared to normal controls (p<0.001). We then tested the effect of TNF on CFU-GM and BFU-E formation from MPN vs normal mononuclear cells. At low concentrations (1ng/ml) of TNF we observed a decrease in BFU-E from normal controls to 82% of that without TNF but an increase in MPN BFU-E to 120% (p<0.05) of that without TNF. We also observed a blunting of TNF induced CFU-GM suppression in MPN versus normal. We genotyped colonies and found that in the presence of TNF colony formation was almost exclusively JAK2 V617F, demonstrating that TNF selects for JAK2 V617F colony growth. To distinguish between direct and indirect TNF effects (i.e. effects mediated through bystander cells) as well as to potentially augment the differential effects of TNF on normal and MPN by the use of a more homogenous cell population we performed equivalent colony formation experiments on CD34+ cells. The most notable difference observed was the effect 10ng/ml TNF on CFU-GM. TNF reduced CFU-GM colony formation by normal CD34+ cells to 50%, but increased CFU-GM colony formation by MPN cells to 120% (p<0.001). The suppressive effect of 10ng/ml on BFU-E was also blunted in MPN versus normal CD34+ cells (49% vs 30% of that without TNF) (p=0.054). Genotyping of MPN colonies allowed us to compare the effect of TNF on colony formation on three distinct populations: (1) JAK2WT MPN CD34+ cells, (2) JAK2V617F MPN CD34+ cells and (3) normal CD34+ cells. As compared to normal controls (59% decrease), JAK2 non-mutated MPN CD34+ cells are hypersensitive to myeloid colony suppression (78% decrease) whereas TNF paradoxically enhances colony formation by JAK2 V617F CD34+ cells (180% increase). This suggests that “pre-JAK2” CD34+ cells are functionally disadvantaged when compared to those from normal controls and implicates TNF in the selection and clonal expansion of the JAK2 V617F clone. To confirm the latter we tested whether ectopic expression of JAK2 V617F in murine hematopoietic progenitors blunts TNF-induced inhibition of myeloid colony formation. In the presence of TNF, colony formation of hematopoietic progenitors expressing empty vector or BCR-ABL (included as an additional control) was decreased to 60%, while TNF had no effect on progenitors with ectopic expression of JAK2 V617F. This suggests that JAK2 V617F directly imparts TNF resistance. To interrogate the role of TNF for the development of MPN in vivo, we infected TNF+/+ and TNF−/− bone marrow with JAK2 V617F-GFP retrovirus and transplanted the cells into genotypically matched recipients. Two strains of mice were used in independent experiments (C57BL6 and B6129S6). Equal numbers of TNF+/+ and TNF−/− GFP+ cells per mouse were injected. Although peripheral blood counts were comparable, JAK2 V617F burden (assessed by GFP%) was significantly lower in recipients of TNF−/− knockout bone marrow compared to recipients of TNF+/+ marrow. This difference in JAK2 V617F burden between the two groups was apparent in peripheral blood (47% vs 3.7%, p <0.05) and bone marrow (52% vs 2%, p<0.05) and the spleens of the TNF−/− were smaller (0.46g vs 0.11g, p=0.078). Our data suggest that JAK2 V617F-induced TNF resistance may drive the expansion of the mutant clone by conferring a growth advantage to JAK2 V617F cells over their JAK2 wild-type counterparts in the high cytokine microenvironment of MPN patients. Further, JAK2WT MPN cells exhibit intrinsic TNF hypersensitivity compared to normal cells, which greatly enhances this selective advantage. This JAK2V617F-negative state may play a role in the predisposition to acquire MPN. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document