scholarly journals Expression of JAK2V617I Does Not Result in Overt Myeloproliferative Disorder, but Results in Cytokine Hypersensitivity

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3218-3218
Author(s):  
Stefan Brooks ◽  
Samuel B Luty ◽  
Hew Yeng Lai ◽  
Lacey R Royer ◽  
Sarah J Morse ◽  
...  

Abstract BACKGROUND: A germline JAK2V617I mutation has recently been identified in a family with hereditary thrombocytosis (Mead et al, NEJM 2012). Like acquired MPN, family members with JAK2V617I have thrombocytosis and megakaryocytic hyperplasia in the marrow with increased risk of thrombosis. But unlike acquired MPN, individuals with this germline mutation do not develop a fibrotic bone marrow, splenomegaly, or transform to acute leukemia. Why germline JAK2V617I recapitulates some aspects but not others of the MPN phenotype in humans is unclear. To delineate the differences between JAK2V617F and JAK2V617I we compared the phenotype of mice with hematopoietic cells expressing JAK2V617F or JAK2V617I. METHODS AND RESULTS: Lethally irradiated C57B/6 mice were transplanted with bone marrow cells infected with retrovirus expressing JAK2V617F, JAK2V617I, or empty MSCV-IRES-GFP (MIG) vector. As expected, mice transplanted with JAK2V617F-expressing cells developed erythrocytosis and leukocytosis, whereas mice transplanted with JAK2V617I-expressing cells had peripheral blood counts similar to empty vector mice. Humans with germline JAK2V617I do not display constitutive activation of the kinase, but they do demonstrate cytokine hyper-responsiveness as evidenced by increased phosphorylation of STATs at low concentrations of ligand. We compared phosphorylated STAT5 in peripheral blood of mice transplanted with JAK2V617I, JAK2V617F, and MIG empty vector following stimulation with increasing concentrations of GM-CSF. At all concentrations of GM-CSF tested JAK2V617I and JAK2V617F-expressing cells had exaggerated phosphorylation of STAT5 as compared to MIG empty vector mice. We also measured phospho-STAT3 and STAT5 in unstimulated bone marrow and spleen from each mouse at time of euthanasia, there was no difference between JAK2V617I and MIG empty vector mice. JAK2V617F mice did demonstrate phosphorylation of STAT3 and STAT5 in the absence of GM-CSF, confirming the ability of JAK2V617F but not JAK2V617I to constitutively activate downstream signaling pathways. Next, to evaluate for histologic evidence of MPN and assess spleen size, all mice were euthanized at 120 days post-transplant. JAK2V617F mice had splenomegaly as expected, spleens from JAK2V617I mice appeared larger than empty vector mice, but spleen weight was not statistically different (p>0.05). While JAKV617I mice had increased cellularity of their marrow with increased numbers of megakaryocytes as compared to empty vector mice, this was not nearly to the extent of JAK2V617F mice. Mild fibrosis was seen in JAK2V617I mice, JAK2V617F mice had severe reticulin fibrosis in the marrow as expected. In the spleen architecture was preserved in the JAK2V617I mice, whereas in the JAK2V617F mice splenic architecture was disrupted by invasion of myeloid cells including megakaryocytes. To identify whether JAK2V617I affects the frequency of stem and progenitor cells or expands mature myeloid lineage cells we measured the frequency of hematopoietic stem cells, myeloid progenitors, and mature myeloid populations in JAK2V617F, JAK2V617I, and MIG empty vector. The bone marrow of JAK2V617I mice contained an increased percentage of GMP and MEP populations as compared to both the MIG empty vector and the JAK2V617F mice. Mature granulocyte (Gr-1+CD11b+) and erythroid (Ter119+) populations were expanded in the bone marrow and spleen of JAK2V617F but not JAK2V617I mice. CONCLUSIONS: These data demonstrate that the JAK2V617I mouse model recapitulates the effect of germline expression of JAK2V617I seen in humans: it results in cytokine hyper-responsiveness without the ability to constitutively activate downstream signals in the absence of ligand. Why JAK2V617F is so exquisitely conserved in acquired MPN is still unknown. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 635-635 ◽  
Author(s):  
Thanh Kim Nguyen ◽  
Prasanthi Tata ◽  
Stefan Brooks ◽  
Nilamani Jena ◽  
Sarah J Morse ◽  
...  

Abstract Insertion or deletion mutations in calreticulin (CALR) are present in the majority of JAK2V617F-negative MPN patients. We utilized a murine retroviral transduction-transplantation model to express the 52bp CALR deletion mutation (CALRDEL) in both BALB/c and C57B/6 backgrounds. As described previously (Marty et al., Blood 2016;127:1317), recipients of CALRDEL-transduced marrow developed persistent thrombocytosis without leukocytosis or erythrocytosis by two months post-transplant. Mice were euthanized at six and nine months post-transplant to evaluate the tempo of disease progression. At six months CALRDEL mice had impressive expansion of megakaryocytes expressing the CALRDEL mutant protein in the bone marrow (BM) without fibrosis or significant splenomegaly. By nine months BM fibrosis and splenomegaly were present. Both whole BM and spleen cells were able to serially transplant the MPN phenotype into secondary recipients. When cultured in collagen-based media supplemented with thrombopoietin, CALRDEL BM cells produced an increased number of megakaryocyte colonies as compared to empty vector. The increased colony formation potential of CALRDEL bone marrow cells was limited to megakaryocytes, we found no increase in colony formation from CALRDEL hematopoietic stem and progenitor cells in methylcellulose with cytokines supporting erythroid and GM colony formation. However, CALRDEL enhanced the serial replating ability of LKS (lineageneg, c-kit+ Sca-1+) cells. Both pSTAT5 and pERK were increased in whole spleen lysates from CALRDEL mice as compared to wild-type BALB/c mice. Therefore, we tested the impact of ruxolitinib, a JAK1/2 inhibitor, and trametinib, a MAPK/ERK inhibitor, on the MPN phenotype of CALRDEL mice. At six months post-transplant mice were treated with either ruxolitinib (90mg/kg PO BID), trametinib (3mg/kg PO daily), or vehicle for 40 days. Ruxolitinib reduced pSTAT5 but caused a paradoxical increase in pERK in whole spleen lysates, while trametinib reduced pERK but not pSTAT5. Trametinib caused a transient increase in platelets and white cells. In spite of pharmacodynamic evidence of effective dosing, ruxolitinib had no significant effect on platelet or leukocyte count but did reduce hemoglobin slightly. Both ruxolitinib and trametinib reduced spleen weight. Ruxolitinib reduced the fraction of the mutant CALRDEL allele (inferred from percentage of GFP+ cells) in the spleen but not the bone marrow, while trametinib had no impact on disease allele burden in any organ. Neither ruxolitinib nor trametinib reduced the expansion of megakaryocytes in the bone marrow but trametinib significantly reduced marrow fibrosis (average score MF-2.5 for vehicle, MF-1.75 for ruxolitinib, MF-1 for trametinib). To assess the role of STAT5 in the pathogenesis of the ET-like MPN induced by the CALRDEL mutant, we transduced BM from syngeneic Balb/c donors carrying a floxed Stat5ab allele in combination with a Stat5ab null allele (Mx-Cre;Stat5abfl/-; Walz et al., Blood 2012;119:3550). Haploinsufficiency for Stat5ab significantly delayed the development of ET-like MPN and attenuated thrombocytosis, implicating JAK2-STAT5 signaling directly in the pathogenesis of this disease. In summary, this CALRDELmouse model results in an MPN phenotype resembling essential thrombocythemia followed by myelofibrosis. CALRDELresults in expansion of megakaryocytes and platelets without expansion of other myeloid cell types. Both pSTAT5 and pERK are increased in our CALRDEL model and pharmacologic inhibition of pERK results in reduction of fibrosis without reducing megakaryocytes. These studies implicate pERK as a potential anti-fibrosis therapeutic target in MPN. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 796-796
Author(s):  
Benjamin Povinelli ◽  
Michael Nemeth

Abstract The molecular mechanisms that control the balance between quiescence and proliferation of hematopoietic stem and progenitor cells (HSPCs) are critical for maintaining life-long hematopoiesis. In a recent study (Povinelli, et al. Stem Cells, In Press, 2013) we demonstrated that the Wnt5a ligand inhibits HSPC proliferation through a functional interaction with a non-canonical Wnt ligand receptor termed Related to Receptor Tyrosine Kinase (Ryk). Expression of Ryk on HSPCs in vivo was associated with a decreased rate of proliferation. Following treatment with fluorouracil (5-FU), the percentage of Ryk+ HSPCs increased at the expense of Ryk-/low HSPCs. Based on these data, we hypothesized that one function of the Ryk receptor is to protect HSPCs from the effects of myeloablative agents. To test this hypothesis, we injected 6-8 week old C57BL/6 mice with 150 mg/kg of 5-FU and analyzed bone marrow 48 hours later for the presence of apoptotic HSPCs, defined as lineage negative (Lin-), Sca-1+, CD48- cells positive for active caspase-3. There was a 2.5-fold decrease in the percentage of apoptotic Ryk+ HSPCs (12.9 ± 1.7%) compared to Ryk-/low HSPCs (32.4 ± 5.3%, p < 0.001, n = 3). To test whether this effect was limited to 5-FU, we performed a similar study in which we irradiated C57BL/6 mice with 3 cGy of total body irradiation (TBI) and analyzed bone marrow 72 hours later for apoptotic HSPCs (for this experiment, defined by a Lin-, c-kit+, Sca-1+, CD150+, CD48- immunophenotype or LSK, SLAM). Comparable to the effects of 5-FU, there was a significant 3.0-fold reduction in the percentage of apoptotic Ryk+ HSPCs (3.1 ± 0.2%) compared to Ryk-/low HSPCs (9.2 ± 1.5%, p < 0. 001, n = 3) in mice receiving 3 cGy TBI. These results demonstrated an association between Ryk expression and survival of HSPCs following myeloablative injury. To determine whether in vivo targeting of the Ryk receptor would increase the sensitivity of HSPCs to myeloablative injury, we utilized a neutralizing rabbit anti-Ryk antibody (α-Ryk). We injected C57BL/6 mice with 5 mg/kg α-Ryk or rabbit IgG isotype for 2 consecutive days. Twenty-four hours after the second dose, we determined the frequency and cell cycle status of LSK SLAM cells. Treatment with α-Ryk significantly increased the percentage of LSK SLAM cells in the S/G2/M phases compared to control (α-Ryk: 17.8 ± 2.2%; isotype IgG: 11.6 ± 2.7%, p < 0.05, n = 3). This was associated with a decrease in the percentage of LSK, SLAM cells in G1 following treatment with α-Ryk (α-Ryk: 40.5 ± 3.2%, isotype IgG: 51.3 ± 2.2; p < 0.01, n = 3). The percentage of G0 LSK SLAM cells was unchanged (α-Ryk: 37.9 ± 2.6, isotype IgG: 35.7 ± 3.1% n = 3) indicating that inhibiting Ryk promoted the exit of LSK SLAM cells from G1. Treatment with α-Ryk also increased the percentage of whole bone marrow cells expressing the LSK SLAM phenotype by 1.4-fold compared to controls (p < 0.05, n = 3). To determine if α-Ryk treatment altered HSPC function, we transplanted whole bone marrow cells from C57BL/6 mice treated with two days of α-Ryk or isotype IgG at a 1:1 ratio with whole bone marrow from untreated Ubc-GFP transgenic mice into lethally irradiated B6.SJL mice. Four weeks after transplant, we analyzed peripheral blood cells for the percentage of CD45.2+ GFP- cells. There was no difference in engraftment by transplanted bone marrow cells from mice treated with α-Ryk or isotype IgG (α-Ryk: 61.6 ± 6.1% n = 4, isotype IgG: 52.8 ± 13.6%, n = 5), indicating that the neutralizing antibody does not inhibit short-term HSPC function on its own. We then tested whether blocking Ryk function resulted in greater sensitivity of HSPCs to 5-FU. We treated B6.SJL mice with 5 mg/kg α-Ryk or isotype IgG for 2 consecutive days, followed by 150 mg/kg of 5-FU. Forty-eight hours after 5-FU treatment, we transplanted 2x106 C57BL/6 whole bone marrow cells into treated B6.SJL mice without additional conditioning. Four weeks after transplant, we determined the percentage of donor-derived CD45.2+ peripheral blood cells. Treatment of recipient mice with α-Ryk prior to 5-FU treatment resulted in increased engraftment of donor bone marrow by 3.6-fold compared to isotype (p < 0.05, n = 5), suggesting that inhibition of Ryk resulted in increased elimination of host HSPCs by 5-FU. Collectively, these data suggest a model in which inhibition of the Ryk receptor results in increased proliferation of HSPCs, rendering them more sensitive to the effects of myeloablative agents such as chemotherapy or TBI. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1457-1457
Author(s):  
Hideyo Hirai ◽  
Naoka Kamio ◽  
Akiko Matsusue ◽  
Shinpei Ogino ◽  
Nobuhiko Kimura ◽  
...  

Abstract Abstract 1457 Poster Board I-480 Mobilization of sufficient numbers of granulocytes to the front line of infection is prerequisite for host defense. As granulocytes have a short half-life, the production of granulocytes in the bone marrow must be tightly regulated to meet emergency demands. Our previous findings suggested that granulopoiesis at steady state is largely dependent on CCAAT enhancer binding protein α (C/EBPα) transcription factor (Zhang D.E. et al., PNAS, 1996 and Zhang P. et al., Immunity, 2004), whereas the granulopoiesis during emergency such as infections is dependent upon C/EBPβ (Hirai H. et al., Nat Immunology, 2006). Indeed the transcripts of C/EBPβ in granulocyte precursors were upregulated in response to cytokine stimulation or infection. In order to elucidate the molecular switch between C/EBPα- and C/EBPβ-dependent granulopoiesis, we developed a novel lentivirus-based reporter system. The vector carries two independent expression units, a green fluorescent protein (GFP) driven by a promoter of interest and a mouse Thy1.1 gene under the control of a constitutively active phosphoglycerate kinase (PGK) promoter. The activity of a promoter can be monitored by the intensity of GFP in Thy1.1 positive cells. Using this system, the activity of the C/EBPβpromoter was evaluated in primary bone marrow cells. A series of deletion mutants of the promoter revealed the existence of two cyclic AMP responsive elements (CRE) in the positive responsive elements during GM-CSF induced differentiation. The transcripts of CRE binding (CREB) protein were detected at higher level in hematopoietic stem cells and common myeloid progenitors than other mature cells. When a dominant negative mutant of CREB (S133A), in which the serine residue at 133aa was mutated to alanine, was retrovirally transduced into bone marrow cells, the mRNA of C/EBPβ was reduced and the proliferation/differentiation of granulocyte precursors were significantly impaired. In contrast, a constitutively active form of CREB, CREBDIEDML, facilitated the transcription of C/EBPβ. In addition, CREB is phosphorylated and bound to the CRE in response to GM-CSF stimulation. These data suggest that CREB is involved in the regulation of granulopoiesis through upregulation of C/EBPβ. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 36-37
Author(s):  
Mayara Magna de Lima Melo ◽  
Daniela de Paula Borges ◽  
Antônio Wesley Araújo Dos Santos ◽  
Gabrielle Melo Cavalcante ◽  
Leticia Rodrigues Sampaio ◽  
...  

Myelodysplastic syndrome (MDS) is a clonal hematopoietic disorder characterized by cytopenias and an increased risk of progression to acute myeloid leukemia (AML). Its pathogenesis is strictly linked to chromosomal instability, which in turn provides a valuable prognostic marker. Malignant cells develop alternative routes to escape mitosis checkpoints, overcoming the mitotic arrest imposed by Spindle Assembly Checkpoint (SAC), a process dependent on CDC20 inactivation. Abnormal levels of CDC20 can inhibit mitotic arrest, promoting premature exit from mitosis. Overexpression of CEP55 also facilitates the mitotic exit, resulting in polyploidy (an event called Mitotic Slippage). Since chromosomal abnormalities are one of the most important prognostic factors for patients with MDS, this study aimed to analyze the possible link between chromosomal abnormalities and CDC20 and CEP55 mRNA expression in MDS. We evaluated the bone marrow cells from 45 patients diagnosed as MDS according to 2016 WHO-classification (1 MDS-SLD, 15 MDS-RS-MLD, 5 MDS-MLD, 1 t-MDS, and 23 MDS-EB) and 5 bone marrow of healthy controls. Conventional Karyotyping was performed by G-banding of 20 metaphases whenever possible. TaqMan expression assays for CDC20 (Hs00426680_mH) and CEP55 (Hs01070181_m1) were performed in duplicate and the expression ratios were calculated using the 2−ΔCq method. Normality was evaluated by Shapiro-Wilk test. Outliers were removed. The Student's t-test or one-way ANOVA with Tukey/Games Howell post-hoc test was used to analyze the influence of relative expression regarding variables. Patients with MDS showed increased expression of CDC20 and CEP55 compared to healthy individuals (p&lt;0.0001 and p&lt;0.0001). Regarding karyotype, there was the overexpression of CDC20 and CEP55 in patients with altered karyotype and aneuploid karyotype when compared to patients with normal karyotype (p &lt;0.0001 and p =0.001; p = 0.013 and p = 0.022, respectively) (Figure 1A-D). CDC20 and CEP55 have fundamental functions in controlling the progression of metaphase to anaphase and both, when upregulated, induce chromosomal instability. Additionally, patients with del(7q) and complex karyotype showed hyperexpression of CEP55 when compared with patients with normal karyotype (p = 0.005 and p = 0.019) (Figure 1E-F), while patients with deletion (5q) had an increased expression of CDC20 when compared with patients with normal karyotype (p &lt;0.0001). Our group previously demonstrate that high CDC20 protein expression is associated with complex karyotype in MDS patients. Thus, we hypothesized that the deregulation of CDC20 and CEP55 expression induces chromosomal changes, each one in its way. Both can cause disturbances in crucial phases of mitosis (anaphase and cytokinesis, respectively). Finally, we detected a strong correlation between CDC20 and CEP55 (r = 0.646; p &lt;0.0001), suggesting both genes may play a synergistic role during chromosomal abnormalities in MDS, creating possible new targets to be evaluated in MDS. Our data suggest CDC20 and CEP55 as possible new therapeutic targets in MDS. There is a need for further studies, validations and urgent in-depth investigations in cell lines/primary samples or murine models. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1406-1406
Author(s):  
Matthew J Boyer ◽  
Feng Xu ◽  
Hui Yu ◽  
Tao Cheng

Abstract DNA methylation is an epigenetic means of gene regulation and is carried out by a family of methyltransferases of which DNMT1 acts to maintain methylation marks following DNA replication and DNMT3a and DNMT3b methylate DNA de novo. DNMT3b has been shown to be essential for mammalian development and necessary for differentiation of germline and neural progenitor cells. Mutations of DNMT3b in humans lead to a rare autosomal recessive disorder characterized by immunodeficiency, centromeric instability, and facial abnormalities. We have shown by real-time, RT-PCR that DNMT3b mRNA is uniquely over-expressed by approximately 30-fold in immunophenotypically-defined longterm repopulating hematopoietic stem cells (HSCs) that are CD34−lineage−c-kit+Sca-1+ as compared to progenitor and differentiated cell types within the bone marrow and with respect to the other members of the DNMT family, namely DNMT1 and DNMT3a. To determine DNMT3b’s function in HSCs competitive bone marrow transplantation was undertaken. Isolated lineage− enriched bone marrow cells were transduced with a retroviral backbone based on the Murine Stem Cell Virus (MSCV) carrying either GFP and a short, hairpin RNA (shRNA) targeting DNMT3b or GFP alone. Following transduction 1×105 GFP+ cells along with 1×105 competitor cells were transplanted into 9.5 Gray irradiated congenic recipients. Two months following transplantation mice receiving bone marrow cells transduced with DNMT3b shRNA showed a significantly lower engraftment of donor cells as a percentage of total competitor cell engraftment in the peripheral blood as compared to those receiving cells transduced with GFP alone (24.8 vs 3.7, p&lt;0.05) which persisted at 3 months (22.8 vs 1.5, p&lt;0.05). Similarly, within the donor derviced cells in the peripheral blood there was a lower percentage of myeloid (CD11b+) cells at 2 and 3 months in the recipients of DNMT3b shRNA transduced cells as compared to controls. However there was no observed difference in the percentage of peripheral B (CD45R+) or T (CD3+) cells within the donor-derived cells. To determine the mechanism behind the observed engraftment defect with DNMT3b knockdown we cultured GFP+ transduced bone marrow cells in vitro with minimal cytokine support. As a control for our targeting methodology we also transduced bone marrow cells from mice harboring two floxed DNMT3b alleles with a MSCV carrying Cre recombinase and GFP. While lineage− bone marrow cells transduced with GFP alone increased 10-fold in number over two weeks of culture, cells in which DNMT3b was down regulated by shRNA or Cre-mediated recombination only doubled. Culture of lineage− bone marrow cells in methylcellulose medium by the colony-forming cell (CFC) assay revealed increases in the granulocytic and total number of colonies with DNMT3b knockdown or Cre-mediated recombination of DNMT3b similar to the increased myeloid engraftment of DNMT3b shRNA transduced cells observed 1 month following competitive bone marrow transplantation. However when 5,000 of these cells from the first CFC assay were sub-cultured there was a significant loss of colony forming ability within all lineages when DNMT3b was targeted by shRNA or Cre-mediated recombination. Taken together with the decreased engraftment of DNMT3b shRNA cells following competitive bone marrow transplantation, the observed limited proliferation in liquid culture and loss of colony forming ability during serial CFC assays is suggestive of a self-renewal defect of HSCs in the absence of DNMT3b, that was previously only reported in the absence of both DNMT3a and DNMT3b. Further elucidation of this proposed self-renewal defect is being undertaken and results of ongoing studies including long-term culture initiating cell (LTC-IC) assays and identification of genomic sites of DNA methylation within different hematopoietic subsets will also be presented.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4314-4314
Author(s):  
Akm Khyrul Wara ◽  
Kevin Croce ◽  
ShiYin Foo ◽  
Xinghui Sun ◽  
Basak Icli ◽  
...  

Abstract Abstract 4314 Background: Emerging evidence demonstrates that endothelial progenitor cells (EPCs) may originate from the bone marrow and are capable of being recruited to sites of ischemic injury and contribute to neovascularization. However, the identities of these bone marrow cells and the signaling pathways that regulate their differentiation into functional EPCs remain poorly understood. Methods and Results: We previously identified that among hematopoietic progenitor stem cells, common myeloid progenitors (CMPs) and granulocyte-macrophage progenitors (GMPs) can preferentially differentiate into EPCs and possess high angiogenic activity under ischemic conditions compared to megakaryocyte-erythrocyte progenitors (MEPs), hematopoietic stem cells (HSCs), and common lymphoid progenitors (CLPs). Herein, we identify that a TGF-β1-responsive Kruppel-like Factor, KLF10, is robustly expressed in EPCs derived from CMPs and GMPs, compared to progenitors lacking EPC markers. KLF10–/– mice have marked defects in circulating EPCs (–23.6% vs. WT, P&lt;0.004). In addition, EPC differentiation and TGF-β induced KDR responsiveness is markedly impaired (CMPs: WT 22.3% vs. KO 8.64%, P&lt;0.0001; GMPs: WT 32.8% vs. KO 8.97%, P&lt;0.00001). Functionally, KLF10–/– EPCs derived from CMPs and GMPs adhered less to fibronectin-coated plates (CMPs: WT 285 vs. KO 144.25, P&lt; 0.0004; GMPs: WT 275.25 vs. KO 108.75, P &lt;0.0003) and had decreased rates of migration in transwell Boyden chambers (CMPs: WT 692 vs. KO 298.66, P&lt;0.00004; GMPs: WT 635.66 vs. KO 263.66, P&lt;0.00001). KLF10–/– mice displayed impaired blood flow recovery after hindlimb ischemia (day 14, WT 0.827 vs. KO 0.640, P &lt;0.009), an effect completely rescued by WT EPCs, but not KLF10–/– EPCs. Matrigel plug implantation studies demonstrated impaired angiogenesis in KLF10–/– mice compared to WT mice (WT 158 vs. KO 39.83, P&lt;0.00000004). Overexpression studies revealed that KLF10 rescued EPC formation from TGF-β1+/– CMPs and GMPs. Mechanistically, TGF-β1 and KLF10 target the VEGFR2 promoter in EPCs which may underlie these effects. Background: Collectively, these observations identify that TGF-β1 signaling and KLF10 are part of a key signaling pathway that regulates EPC differentiation from CMPs and GMPs and may provide a therapeutic target during cardiovascular ischemic states. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3401-3401
Author(s):  
Rebecca L Porter ◽  
Mary A Georger ◽  
Laura M Calvi

Abstract Abstract 3401 Hematopoietic stem and progenitor cells (HSPCs) are responsible for the continual production of all mature blood cells during homeostasis and times of stress. These cells are known to be regulated in part by the bone marrow microenvironment in which they reside. We have previously reported that the microenvironmentally-produced factor Prostaglandin E2 (PGE2) expands HSPCs when administered systemically in naïve mice (Porter, Frisch et. al., Blood, 2009). However, the mechanism mediating this expansion remains unclear. Here, we demonstrate that in vivo PGE2 treatment inhibits apoptosis of HSPCs in naïve mice, as measured by Annexin V staining (p=0.0083, n=6–7 mice/group) and detection of active-Caspase 3 (p=0.01, n=6–7 mice/group). These data suggest that inhibition of apoptosis is at least one mechanism by which PGE2 expands HSPCs. Since PGE2 is a local mediator of injury and is known to play a protective role in other cell types, we hypothesized that it could be an important microenvironmental regulator of HSPCs during times of injury. Thus, these studies explored the role of PGE2 signaling in the bone marrow following myelosuppressive injury using a radiation injury model. Endogenous PGE2 levels in the bone marrow increased 2.9-fold in response to a sub-lethal dose of 6.5 Gy total body irradiation (TBI)(p=0.0004, n=3–11 mice/group). This increase in PGE2 correlated with up-regulation of microenvironmental Cyclooxygenase-2 (Cox-2) mRNA (p=0.0048) and protein levels at 24 and 72 hr post-TBI, respectively. Further augmentation of prostaglandin signaling following 6.5 Gy TBI by administration of exogenous 16,16-dimethyl-PGE2 (dmPGE2) enhanced the survival of functional HSPCs acutely after injury. At 24 hr post-TBI, the bone marrow of dmPGE2-treated animals contained significantly more LSK cells (p=0.0037, n=13 mice/group) and colony forming unit-spleen cells (p=0.037, n=5 mice/group). Competitive transplantation assays at 72 hr post-TBI demonstrated that bone marrow cells from irradiated dmPGE2-treated mice exhibited increased repopulating activity compared with cells from vehicle-treated mice. Taken together, these results indicate that dmPGE2 treatment post-TBI increases survival of functional HSPCs. Since PGE2 can inhibit apoptosis of HSPCs in naïve mice, the effect of dmPGE2 post-TBI on apoptosis was also investigated. HSPCs isolated from mice 24 hr post-TBI demonstrated statistically significant down-regulation of several pro-apoptotic genes and up-regulation of anti-apoptotic genes in dmPGE2-treated animals (3 separate experiments with n=4–8 mice/group in each), suggesting that dmPGE2 initiates an anti-apoptotic program in HSPCs following injury. Notably, there was no significant change in expression of the anti-apoptotic gene Survivin, which has previously been reported to increase in response to ex vivo dmPGE2 treatment of bone marrow cells (Hoggatt et. al., Blood, 2009), suggesting differential effects of dmPGE2 in vivo and/or in an injury setting. Additionally, to ensure that this inhibition of apoptosis was not merely increasing survival of damaged and non-functional HSPCs, the effect of early treatment with dmPGE2 post-TBI on hematopoietic recovery was assayed by monitoring peripheral blood counts. Interestingly, dmPGE2 treatment in the first 72 hr post-TBI significantly accelerated recovery of platelet levels and hematocrit compared with injured vehicle-treated mice (n=12 mice/group). Immunohistochemical analysis of the bone marrow of dmPGE2-treated mice also exhibited a dramatic activation of Cox-2 in the bone marrow microenvironment. This suggests that the beneficial effect of dmPGE2 treatment following injury may occur, both through direct stimulation of hematopoietic cells and also via activation of the HSC niche. In summary, these data indicate that PGE2 is a critical microenvironmental regulator of hematopoietic cells in response to injury. Exploitation of the dmPGE2-induced initiation of an anti-apoptotic program in HSPCs may represent a useful method to increase survival of these cells after sub-lethal radiation injury. Further, amplification of prostaglandin signaling by treatment with PGE2 agonists may also represent a novel approach to meaningfully accelerate recovery of peripheral blood counts in patients with hematopoietic system injury during a vulnerable time when few therapeutic options are currently available. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 859-859 ◽  
Author(s):  
Chen Zhao ◽  
Yan Xiu ◽  
John M Ashton ◽  
Lianping Xing ◽  
Yoshikazu Morita ◽  
...  

Abstract Abstract 859 RelB and NF-kB2 are the main effectors of NF-kB non-canonical signaling and play critical roles in many physiological processes. However, their role in hematopoietic stem/progenitor cell (HSPC) maintenance has not been characterized. To investigate this, we generated RelB/NF-kB2 double-knockout (dKO) mice and found that dKO HSPCs have profoundly impaired engraftment and self-renewal activity after transplantation into wild-type recipients. Transplantation of wild-type bone marrow cells into dKO mice to assess the role of the dKO microenvironment showed that wild-type HSPCs cycled more rapidly, were more abundant, and had developmental aberrancies: increased myeloid and decreased lymphoid lineages, similar to dKO HSPCs. Notably, when these wild-type cells were returned to normal hosts, these phenotypic changes were reversed, indicating a potent but transient phenotype conferred by the dKO microenvironment. However, dKO bone marrow stromal cell numbers were reduced, and bone-lining niche cells supported less HSPC expansion than controls. Further, increased dKO HSPC proliferation was associated with impaired expression of niche adhesion molecules by bone-lining cells and increased inflammatory cytokine expression by bone marrow cells. Thus, RelB/NF-kB2 signaling positively and intrinsically regulates HSPC self-renewal and maintains stromal/osteoblastic niches and negatively and extrinsically regulates HSPC expansion and lineage commitment through the marrow microenvironment. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4831-4831
Author(s):  
Stefanie Bugl ◽  
Stefan Wirths ◽  
R Müller Martin ◽  
Märklin Melanie ◽  
Tina Wiesner ◽  
...  

Abstract Abstract 4831 Introduction: Previously it was demonstrated that lymphopoiesis is rapidly established after transplantation of wild type stem cells into lymphopenic NODSCIDcγ−/− mice. These data were interpreted as evidence for an “empty” preformed lymphopoietic niche being replenished by lymphoid progenitors. We hypothesized that antibody-induced neutropenia might influence early post transplant fate decision to myeloid rather than lymphoid differentiation resulting in delayed lymphoid reconstitution. Materials and Methods: 25,000 flow sorted CD45.2-expressing wild type Lin-/Sca1+/c-Kit+ (LSK) cells from C57BL/6 mice were transplanted into sublethally irradiated B-/T-/NK-cell deficient NODSCIDcγ−/− mice (CD45.1). Three groups of n = 7 mice received anti-Gr1 or anti-1A8 i.p. every 48 h to induce continuous antibody-mediated neutropenia vs. PBS as control. Blood was harvested at regular intervals to monitor the engraftment. After 16, 22, and 34 days, animals were sacrificed and underwent blood and bone marrow analysis. Results: Hematopoietic regeneration started with the emergence of donor-derived monocytes in all groups as well as neutrophils in the control group as early as 9 days after transplantation. On day 14, B cells were to be detected for the first time, followed by T lymphocytes approximately 20 days after transplantation. Besides the fact that neutrophils were undetectable in the antibody treated groups, the peripheral blood revealed no significant changes between the neutropenic mice and the control group at any point of time. At the bone marrow level, an increase of LSK and granulocyte-macrophage progenitors (GMPs) at the expense of megakaryocyte erythrocyte progenitor cells (MEPs) was found in neutropenic mice. Common lymphoid progenitors (CLPs), however, were not significantly different. Conclusions: The engraftment of wild type donor cells after hematopoietic stem cell transplantation into NODSCIDcγ−/− mice started with the production of monocytes and neutrophils. B-lymphocytes were detectable by day 14 after transplantation. The production of T-cells started around day 20. Continuous antibody-mediated neutropenia did not significantly delay lymphoid regeneration. Although the marrow of neutropenic mice displayed increased proliferation of granulocyte progenitors, CLPs were unchanged. We conclude that the detection of donor-derived lymphocytes in the host peripheral blood is a relatively early event after LSK transplantation. Moreover, antibody induced neutropenia is not sufficient to induce sustainable changes in early hematopoietic fate decisions on the bone marrow level. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 402-402
Author(s):  
Goro Sashida ◽  
Satomi Tanaka ◽  
Makiko Mochizuki-Kashio ◽  
Atsunori Saraya ◽  
Tomoya Muto ◽  
...  

Abstract Abstract 402 Polycomb group proteins are transcriptional repressors that epigenetically regulate transcription via histone modifications. There are two major polycomb-complexes, the Polycomb Repressive Complexes 1 and 2 (PRC1, PRC2). PRC2 contains SUZ12, EED, and EZH1/EZH2, and catalyzes the trimethylation of histone H3 at lysine 27 (H3K27me3), silencing target-genes. We have shown that the self-renewal of Ezh2-deficient HSCs is not compromised and H3K27me3 marks are not completely depleted in the absence of Ezh2, possibly as a result of Ezh1 complementation. EZH2 is generally thought to act as an oncogene in lymphoma and solid tumors by silencing tumor suppressor genes. Recently however, loss-of-function mutations of EZH2 have been found in myeloid malignancies such as AML, MDS and MPN, suggesting that EZH2 also functions as a tumor suppressor, although it remains unclear how EZH2 prevents the transformation of myeloid malignancies. RUNX1 is a critical transcription factor in the regulation of the self-renewal and differentiation of HSCs. RUNX1 mutations are frequently found in MDS, AML following MDS (MDS/AML) and de novo AML patients. One of the most frequent mutations, RUNX1S291fs, lacks the transactivation domain in C-terminus, but retains the RUNT DNA biding domain, resulting in a dominant negative phenotype. RUNX1S291fs-transduced bone marrow cells have been shown to generate MDS/AML in vivo. Given that RUNX1 and EZH2 mutations coexist in MDS and AML patients as reported recently, we generated a novel mouse model of MDS utilizing RUNX1S291fs retrovirus and Ezh2 conditional knockout mice in order to understand how EZH2 loss contributes to the pathogenesis of MDS upon genetic mutation of RUNX1. We first harvested CD34-Lin-Sca1+c-Kit+(LSK) HSCs from tamoxifen-inducible Cre-ERT;Ezh2wild/wild (EW) and Cre-ERT;Ezh2flox/flox (EF) mice (CD45.2) and transduced these cells with RUNX1S291fs retrovirus or an empty vector, which contains IRES-GFP. Then, we transplanted RUNX1S291fs-transduced Cre-ERT;Ezh2wild/wild (S291EW) or Cre-ERT;Ezh2flox/flox (S291EF) HSCs into lethally irradiated recipient mice (CD45.1) together with life saving dose 1×105 CD45.1 bone marrow cells. At 6 weeks post transplantation, we deleted Ezh2 via administration of tamoxifen, and observed disease progression until 12 months post transplantation. The empty vector transduced control mice with or without Ezh2 (EW and EF) did not develop myeloid malignancies. Two out of 16 S291EW mice died due to MDS progression, while 12 out of 16 and 1 out of 17 S291EF mice developed MDS and MDS/AML, respectively. S291EF mice showed significantly shorter median survival than S291EW mice (314 days versus undefined, p=0.037). In the peripheral blood, we observed significantly lower CD45.2+GFP+ chimerism in S291EF mice; however S291EF mice eventually showed macrocytic anemia and variable white blood cell counts accompanied with dysplastic features of MDS. Despite low CD45.2+GFP+ chimerism in peripheral blood, S291EF mice showed a higher chimerism of CD45.2+GFP+ cells in the bone marrow and had a significantly increased number of LSK and CD34-LSK cells compared to EW, EF, and S291EW mice, indicating that Ezh2 loss promoted HSCs/progenitors expansion, but impaired myeloid differentiation in the presence of RUNX1S291fs. We also saw enhanced apoptosis of CD71+Ter119+ erythroblasts in S291EF MDS mice, which may account for the anemia we observed. Since S291EF MDS bone marrow cells were transplantable in secondary experiments, we performed limiting-dilution assays to evaluate the frequency of MDS initiating cells and found that the frequency of MDS initiating cells was much higher in S291EF pre-MDS Lin-Mac1-Kit+ cells compared to S291EW pre-MDS Lin-Mac1-Kit+ cells. To understand this molecular mechanism, we performed gene expression analysis during MDS progression. S291EF MDS LSKs showed 1979 and 1875 dysregulated (>5-fold) genes, compared to EW LSK and S291EF pre-MDS LSK, respectively. We are now working to understand how these dysregulated genes are involved in the development of RUNX1S291fs-induced MDS after deletion of Ezh2. In summary, we have successfully recapitulated the clinical feature of MDS in mice reconstituted with Ezh2 null HSCs expressing a RUNX1 mutant, and demonstrated that Ezh2 functions as a tumor suppressor in this context. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document