Srsf2 P95H Mutation Causes Impaired Stem Cell Repopulation and Hematopoietic Differentiation in Mice

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1649-1649 ◽  
Author(s):  
Ayana Kon ◽  
Satoshi Yamazaki ◽  
Yasunori Ota ◽  
Keisuke Kataoka ◽  
Yusuke Shiozawa ◽  
...  

Abstract Recent genetic studies have revealed frequent and specific pathway mutations involving multiple components of the RNA splicing machinery in myelodysplasia. Among these, SRSF2 mutations are more prevalent in CMML subtype and are associated with poor prognosis. Mutations showed a prominent hotspot involving proline 95, causing either P95H, P95L, or P95 conversion. Comprehensive analysis in our large cohort of MDS revealed that SRSF2 mutations showed a significant trend to coexist with TET2, STAG2, ASXL1 and RUNX1 mutations, while being mutually exclusive with EZH2 mutations. On the other hand, the molecular mechanism by which SRSF2 mutations lead to myelodysplasia remains largely unknown.  To elucidate the role of SRSF2 mutations in the development of myelodysplasia, we generated a heterozygous conditional knock-in mouse model of Srsf2 P95H mutation and crossed them with Vav1-Cre transgenic mice. Srsf2 P95H mutant mice exhibited macrocytic anemia, otherwise no significant changes in total peripheral blood (PB) cell counts compared to wild-type mice at 8-15 weeks after birth. There was no significant difference in lineage composition as well as blood cell morphology between wild-type and mutant mice in both bone marrow (BM) and PB. Flow cytometry of BM cells showed significant decrease of the number of hematopoietic stem cells (HSCs) and multipotent progenitor cells defined as Lin-Sca-1+Kit+ (LSK) fractions in Srsf2 P95H mice compared to wild-type mice. On the other hand, there were no significant differences in the number of more differentiated progenitor cells including common myeloid progenitors (CMPs), granulocyte/macrophage lineage-restricted progenitors (GMPs), megakaryocyte/erythrocyte lineage-restricted progenitors (MEPs), and common lymphoid progenitors (CLPs) between Srsf2 P95H and wild-type mice. These observations suggested that heterozygous Srsf2 mutation led to deregulation of hematopoietic stem cells, which however, is not sufficient for the development of MDS.  We next performed noncompetitive transplantation experiments to assess the cell intrinsic effects of Srsf2 P95H mutations. In PB, decreased white blood cell counts and progressive anemia were observed in mutant mice, which were evident as early as one month after transplantation. Cytological analysis of PB revealed morphological abnormalities in mice reconstituted with Srsf2 mutated cells, including hypersegmentation in neutrophils and dysplasia in the erythroid lineage. Srsf2 mutant-reconstituted mice showed normo-to-hypercellular marrow, where abnormal megakaryocyte distribution adjacent to trabecular bone and erythroid dysplasia was observed. Flow cytometrical analysis revealed decreased numbers of HSCs, LSK fractions and CMPs, whereas there was no significant change in the number of MEPs, GMPs and CLPs in BM. The BM erythroid progenitors were decreased in mutant-reconstituted mice, whereas the mutant mice showed splenic erythropoiesis with increased erythroid progenitors, suggesting the presence of extramedullary hematopoiesis, which was not seen in wild-type Srsf2 transduced mice. These observations suggested that the Srsf2 mutation led to ineffective hematopoiesis and morphological abnormalities, which seemed to recapitulate the phenotype of MDS.  Subsequently, we assessed the reconstitution capacity of whole BM cells from Srsf2 mutant mice in competitive transplantation experiments. The donor chimerism of Srsf2 P95H-derived cells in PB was significantly lower than that of wild-type cells. At 4 months post transplantation, the chimerism of Srsf2 P95H-derived cells was remarkably lower than that of wild-type cells in the fractions of HSCs, MPPs, CMPs, MEPs, GMPs and CLPs in BM. Furthermore, the reduced donor chimerism for Srsf2 P95H mutants was recapitulated in secondary transplantation experiments.  In summary, our results demonstrated that heterozygous P95H mutation of Srsf2 led to deregulation of hematopoietic stem cells that was evident from reduced competitive repopulation and impaired hematopoietic differentiation. Whereas mice reconstituted with Srsf2 mutant BM cells developed MDS-like phenotype in non-competitive transplantation setting, Srsf2 mutation by itself does not seem to be sufficient to develop MDS without transplantation, raising the possibility that an additional genetic and/or epigenetic events was required for overt MDS phenotype. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1174-1174
Author(s):  
Darlene Monlish ◽  
Angela Herman ◽  
Molly Romine ◽  
Sima Bhatt ◽  
Laura G. Schuettpelz

Abstract Toll like receptors (TLRs) are a family of pattern recognition receptors (PRRs) that shape the innate immune system by identifying foreign pathogen-associated molecular patterns (PAMPS) and host-derived damage associated patterns (DAMPS). TLRs are widely expressed on both immune cells and non-immune cells, including hematopoietic stem and progenitor cells (HSPCs). Of clinical significance, both lymphoproliferative and myelodysplastic syndromes have been linked to aberrant TLR signaling (Schuettpelz, et al., Front Immunol 2013; Varney, et al., Exp Hematol 2015). Despite extensive studies focused on the influence of TLRs through committed effector cell populations, more recent evidence suggests that these PRRs may elicit immune regulation from the more primitive level of hematopoietic stem cells (HSCs). As TLR2 is expressed on HSCs, in the present study, we sought to elucidate the effect of TLR2 signaling on HSCs, and determine the cell-autonomous versus non-autonomous effects of this signaling. To this end, we utilized the synthetic TLR2 agonist, PAM3CSK4, to assess the effects of augmented TLR2 signaling on HSC mobilization, function, cycling, and differentiation. In previous studies, we found that TLR2 is not required for HSC function (Schuettpelz et al., Leukemia 2014); however, in the present study, treatment of wild-type mice with PAM3CSK4 led to HSC expansion in both the bone marrow and spleen, and a reduction in bone marrow megakaryocyte-erythroid progenitors (MEPs). Further, we observed increased HSC cycling and loss of function in competitive bone marrow transplantation assays in response to TLR2 agonist exposure. Treatment of chimeric animals (Tlr2-/- + Tlr2+/+ bone marrow transplanted into Tlr2+/+ or Tlr2-/- recipients) showed that these effects are largely cell non-autonomous, with a minor contribution from cell-autonomous TLR2 signaling. Analysis of serum, bone marrow, and spleen samples by cytokine expression arrays revealed an increase in G-CSF (serum) and TNFα (bone marrow) following TLR2 agonist treatment in wild-type mice. To further characterize the influence of these cytokines, respective receptor knockout models were employed. Inhibition of G-CSF enhanced HSC bone marrow expansion in response to PAM3CSK4, but partially rescued the expansion of spleen HSPCs. Likewise, loss of TNFa partially mitigated the expansion of spleen HSPCs in response to PAM3CSK4, and abrogated the PAM3CSK4-induced spleen HSC cycling. Further, we observed that loss of TNFa rescued the PAM3CSK4-mediated loss of bone marrow MEPs. Taken together, these data suggest that TLR2 signaling affects HSCs via both cell cell-autonomous and non-autonomous cues, with G-CSF and TNFa contributing to TLR2 agonist-mediated effects on HSC cycling, mobilization, and function. Ongoing studies aim to determine the particular cell types that are crucial for mediating the effects of TLR2 signaling on HSCs and elucidate the role of this pathway on HSCs in myelodysplastic syndrome (MDS) pathogenesis and other hematologic malignancies. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 642-642
Author(s):  
Minghui Tang ◽  
Zhenbiao Xia ◽  
Shubin Zhang ◽  
Shanshan Zhang ◽  
Xudong Wei ◽  
...  

Abstract TGFβ1-activated kinase 1 (TAK1), a member of the MAPKKK family, is a key mediator of stress and proinflammatory signals. TAK1 can be activated by inflammation-mediating cytokines, including tumor necrosis factor-α (TNF-α and interleukin-1b (IL-1β), as well as by T- and B- cell receptors (TCR/BCR), and Toll-like receptors (TLRs) signals. Activated TAK1 induces the nuclear localization of NF-kB and the activation of JNK/AP1 by stimulating IKKβ and MKK3/MKK6 phosphorylation respectively. TAK1 has been found to play an important role in inflammation, immunity, T- and B-cell activation, and epithelial cell survival. The TAK1−/ − phenotype is lethal in mice at the early embryonic stage. We found higher levels of TAK1 expression and activity in hematopoietic stem cells and progenitors (HSC/Ps), and reduced expression and activity in differentiated mature hematopoietic cells. To study the role of TAK1 in bone marrow hematopoiesis, we generated inducible-TAK1 knockout mice by crossing TAK1loxp mice with Mx1Cre mice, the latter being an interferon-inducible Cre mouse line. After injection of polyI:C to induce the knockout, we found that all the TAK1 knockout mice died within 8 to 10 days after the first polyI:C injection, showing severe hematopoietic and other defects; heterozygotes were phenotypically comparable to wild-type control animals. The TAK1 deletion in these mice resulted in ablation of bone marrow hematopoiesis due to the loss of C-Kit+ HSC/Ps. Annexin-V staining showed a 3-fold increase in apoptosis in the C-Kit+ HSC/Ps from TAK1 mutant mice compared to those from littermate control mice. Almost all of the mutant animals showed intestinal bleeding as well as other hemorrhaging due to the significant reductions in platelet counts. In reciprocal bone marrow transplantation experiments, we found that the TAK1-mutant bone marrow microenvironment was able to support the growth and function of wild-type HSC/Ps, while HSC/Ps from TAK1−/ − mice failed to grow within the wild-type bone marrow microenvironment. These observations suggest that the bone marrow ablation phenotype which develops in TAK1-mutant mice is the result of intrinsic defects in HSC/P’s. We propose that TAK1-mutant HSC/Ps might mediate a survival signal for HSC/Ps stimulated by hematopoietic growth factors and cytokines, such as stem cell factor (SCF). The details of possible mechanisms by which this phenomenon might occur is currently under active investigation by our group.


2019 ◽  
Vol 3 (12) ◽  
pp. 1788-1794 ◽  
Author(s):  
Soumya Sundara Rajan ◽  
Lingxiao Li ◽  
Mercedes F. Kweh ◽  
Kranthi Kunkalla ◽  
Amit Dipak Amin ◽  
...  

Key Points CRISPR/Cas9 genomic editing of wild-type hematopoietic stem cells generates Npm1-Alk, leading to ALK+ large-cell lymphomas in recipients. CD30+ postthymic T-cell lymphomas are polyclonal but transplantable to secondary recipients with long latency.


Blood ◽  
2004 ◽  
Vol 103 (11) ◽  
pp. 4126-4133 ◽  
Author(s):  
Ann C. M. Brun ◽  
Jon Mar Björnsson ◽  
Mattias Magnusson ◽  
Nina Larsson ◽  
Per Leveén ◽  
...  

Abstract Enforced expression of Hoxb4 dramatically increases the regeneration of murine hematopoietic stem cells (HSCs) after transplantation and enhances the repopulation ability of human severe combined immunodeficiency (SCID) repopulating cells. Therefore, we asked what physiologic role Hoxb4 has in hematopoiesis. A novel mouse model lacking the entire Hoxb4 gene exhibits significantly reduced cellularity in spleen and bone marrow (BM) and a subtle reduction in red blood cell counts and hemoglobin values. A mild reduction was observed in the numbers of primitive progenitors and stem cells in adult BM and fetal liver, whereas lineage distribution was normal. Although the cell cycle kinetics of primitive progenitors was normal during endogenous hematopoiesis, defects in proliferative responses of BM Lin- Sca1+ c-kit+ stem and progenitor cells were observed in culture and in vivo after the transplantation of BM and fetal liver HSCs. Quantitative analysis of mRNA from fetal liver revealed that a deficiency of Hoxb4 alone changed the expression levels of several other Hox genes and of genes involved in cell cycle regulation. In summary, the deficiency of Hoxb4 leads to hypocellularity in hematopoietic organs and impaired proliferative capacity. However, Hoxb4 is not required for the generation of HSCs or the maintenance of steady state hematopoiesis.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1573-1573 ◽  
Author(s):  
Theodosia A. Kalfa ◽  
Suvarnamala Pushkaran ◽  
James F. Johnson ◽  
Qian Wei ◽  
David A. Williams ◽  
...  

Abstract The small Rho GTPases Rac1 and Rac2 have been implicated in regulating actin structures in a variety of cells, including hematopoietic stem cells and leucocytes. Actin oligomers are a significant structural component of the erythrocyte cytoskeleton. We explored the possible role of Rac1 and Rac2 signaling molecules in the dynamic assembly of actin in the red blood cells (RBC), and thus in the regulation of morphology and function of the erythrocyte cytoskeleton. Rac1 and Rac2 GTPases have been shown to have overlapping as well as distinct roles in actin organization, cell survival, and proliferation in hematopoietic stem cells (Gu et al. Science, 2003); we focused our study on the erythrocyte phenotype of Rac2−/− and Rac1−/−;Rac2−/− mice. Cre-recombinase-induced deletion of Rac1 genomic sequence was accomplished on a Rac2-null genetic background. Deletion of Rac1 after treatment with PolyI:PolyC to induce Cre recombinase was confirmed in bone marrow cells using DNA PCR and in erythrocytes by immunoblot. Since the erythrocytes consist a population of variable age, the optimal time of the maximum Rac1 deletion in erythrocytes was determined to be three to five weeks post induction. During this period, Rac1 protein in erythrocytes was decreased by 50–80% as determined by immunoblot densitometry. Rac2−/− and wild-type mice were subjected to the same treatment to control for any effects of PolyI:PolyC independent of the Rac1 deletion. Blood samples were obtained weekly after the completion of induction and the hematologic phenotype was studied by evaluation of complete blood counts, RBC indices, and reticulocyte counts. Erythrocyte morphology was examined on Wright-Giemsa smears of peripheral blood. Intact erythrocytes and erythrocyte ghosts were stained for actin with rhodamine-phalloidin and studied by confocal microscopy. The Rac2−/− mice appeared to have a rather mild erythrocyte phenotype with no significant anemia or reticulocytosis, although they did demonstrate a mild poikilocytosis and anisocytosis at baseline. The Rac1−/−;Rac2−/− mice developed a microcytic anemia with a hemoglobin drop of up to 30% in comparison to the baseline and to the wild-type hemoglobin values, with the nadir noted at three weeks post induction. The percentage of reticulocytes increased up to threefold in comparison to the control group. The mean corpuscular volume decreased up to 20% from the baseline in the Rac1−/−;Rac2−/− mice, and remained decreased up to six weeks post induction with an elevated red blood cell distribution width. Significant anisocytosis and poikilocytosis were observed with fragmented erythrocytes in the peripheral blood smear. Filamentous actin in the RBC cytoskeleton stained with rhodamine-phalloidin appeared to have a uniform distribution in intact and ghost erythrocytes under confocal microscopy. However, Rac1−/−;Rac2−/− erythrocytes demonstrated punctuate lesions on the cell surface while Rac1−/−;Rac2−/− erythrocyte ghosts appeared to collapse into irregular shapes. These data suggest that deficiency of Rac1 and Rac2 GTPases in mice cause a microcytic hemolytic anemia with poikilocytosis and red cell fragmentation indicating a possible dynamic regulation of the erythrocyte cytoskeleton organization by these signaling molecules.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2775-2775
Author(s):  
Claude Capron ◽  
Catherine Lacout ◽  
Yann Lecluse ◽  
Isabelle Poullion ◽  
Fedor Svinarchouk ◽  
...  

Abstract The hematopoietic stem cells (HSC) have the ability to self-renew and to give rise to all blood lineages. These processes occur via a hierarchy of progenitors with progressively more limited differentiation and self-renewal potential and are orchestrated by specialized protein such as transcription factors. LYL-1 protein contains a basic helix-loop-helix DNA binding motif also found in several proteins involved in the control of cellular proliferation and differentiation such as SCL/TAL-1. As LYL-1 shares an 80% homology at the protein level with SCL/TAL-1, we wanted to determine the function of LYL-1 in hematopoiesis and particularly on HSC. For this study, we used knock in lyl-1−/− mice in which exon 4 was replaced by LacZ/Neo cassette. Lyl−/− mice are viable and have normal blood cell counts as well as a normal marrow cellularity. In addition, using a hematopoietic colony forming cells (CFCs) assay, no significant difference was seen in the myeloid CFCs of either lyl-1−/− or lyl-1+/+ BM and FL cells except a 2-fold increase in the absolute number of BFU-E in lyl-1−/− FL as compared to lyl-1+/+ FL. We analyzed more primitive progenitors in details because using Fluorecein Di-beta Galactopyranoside (FDG)-staining assay, we showed that lyl-1 is mainly expressed in primitive Lin− Sca-1+ c-Kit+ cells (LSK) cells from either BM or FL (91 ± 7% and 78 ± 5% of FDG positive cells in lyl-1−/− BM and FL LSK cells, respectively). In addition, analysis of lyl-1−/− and lyl-1+/+ cells revealed a 1.8-fold and 2-fold decrease in the percentage of primitive LSK in BM and FL, respectively, as compared to wild type cells. Furthermore, using the Hoechst 33342 efflux assay, we noticed a significant decrease in the absolute number of more primitive LSK-SP (side population) cells in lyl-1−/− BM as compared to lyl-1+/+ BM cells (52800 ± 5412 cells/femur versus 91080 ± 8475 cells/femur, respectively) suggesting an important role of LYL-1 in the HSC function. In order to confirm this hypothesis, in vivo assays were performed. We observed a 1.5-fold decrease in the lyl-1−/− BM and FL day 12 CFU-S content as compared to lyl-1+/+ cells. Adoptive transfer experiments were subsequently performed using lethally irradiated Ly5.1 mice. Data showed that lyl-1−/− cells from either BM or FL displayed a hematopoietic reconstitution defect in competitive repopulation assays. Indeed, Ly5.1 recipients were injected with a mixture of 5x106 (5:1), 106 (1:1) or 0.5x106 (0.5:1) lyl-1−/− or lyl-1+/+ Ly5.2 expressing cells and 106 competitive BM Ly5.1 expressing cells. All hosts engrafted with lyl-1−/− BM cells shown a significant reduced levels of chimerism (% of circulating Ly5.2+ cells) as compared to hosts engrafted with lyl-1+/+ BM donors (4.3 ± 2.8% (5:1); 7.5 ± 5.5% (1:1); 0.6 ± 0.3% (0.5:1) in lyl-1−/− BM cells versus 66 ± 8% (5:1); 52 ± 9% (1:1); 53 ± 10% (0.5:1) in lyl-1+/+ BM cells) and similar difference was observed with FL donors (45 ± 2% (5:1); 25 ± 5% (1:1); 11 ± 5% (0.5:1) in lyl-1−/− FL cells versus 83 ± 1% (5:1); 70 ± 3% (1:1); 53 ± 6% (0.5:1) in lyl-1+/+ FL cells). This altered defect in HSC was also confirmed using LTC-IC in vitro experiments. Altogether, our results demonstrate an important role of the transcription factor LYL-1 on the maintenance of HSC properties.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 645-645
Author(s):  
Ashish Kumar ◽  
Weili Chen ◽  
John H. Kersey

Abstract Our understanding of the biology of MLL fusion gene leukemias is limited by the lack of knowledge of the effects of the different MLL fusion genes on expression of specific homoebox genes and the specific cell compartment(s) that are subsequently deregulated. In this study we investigated whether cellular deregulation was present in committed myeloid precursors and/or the multi-potent hematopoietic stem cells derived from Mll-AF9 knock-in mice. We used the murine knock-in model since it offers the advantage of a single copy of the Mll fusion gene under the control of the endogenous promoter that is present in every hematopoietic stem/progenitor cell. The Mll-AF9 knock-in mice display expansion of the myeloid compartment as early as 6 weeks of age (young adult) and develop myeloid leukemia at approximately 6 months. We purified hematopoietic stem cells (HSCs) and granulocyte-monocyte progenitors (GMPs) from wild type and Mll-AF9 young adult bone marrow. We depleted lineage positive cells using a magnetic separation system and purified the respective populations using fluorescence activated cell sorting with specific panels of antibodies (HSC=Li−/Thy1.1lo/IL-7R−/C-kit+/Sca-1+; GMP=Lin−/IL-7R−/Sca-1+/C-kit+/CD34+/CD16/32hi). We cultured these cells in methylcellulose supplemented with GM-CSF, IL-3, SCF and IL-6, conditions that promote the growth of myeloid colonies. We assessed growth deregulation by increased colony numbers at the end of 7 days of culture and by the predominance of dense, compact colony morphology, the latter comprised of immature myeloid cells. Culture of HSCs from Mll-AF9 and wild type mice yielded an identical number of colonies (1102 and 1315 colonies per 104 cells respectively, average). In contrast, GMPs from Mll-AF9 mice yielded almost four times the number of colonies compared to wild type GMPs (3331 and 920 colonies per 104 cells respectively, average). Additionally, Mll-AF9 GMPs formed a higher number of dense, compact colonies compared to Mll-AF9 HSCs (1314 and 352 colonies per 104 cells respectively, average). Neither HSCs nor GMPs from wild type mice formed dense, compact colonies. These results indicate a greater deregulation of GMPs compared to HSCs in Mll-AF9 mice. MLL fusion gene leukemias are characterized by over-expression of specific homeobox genes, and we have previously shown that Mll-AF9 bone marrow cells display increased expression of 5′ Hox-a genes and of the Hox co-factor Meis1 compared to wild type counterparts. We hypothesized that these genes are over-expressed in Mll-AF9 GMPs compared to wild type GMPs. Real time quantitative RT-PCR showed that expression levels of Hoxa7, Hoxa9 and Meis1 were increased in Mll-AF9 GMPs compared to wild type (2.7 ± 0.8, 11.7 ± 7.8 and 19 ± 11.3 fold respectively, mean ± SEM). Overall, these data support the hypothesis that the Mll-AF9 gene is “instructive” at the molecular level at least in part via specific homeobox gene over-expression, resulting in deregulation and expansion of specific progenitor/stem cells such as the GMP population. This expanded GMP population then becomes a target for secondary mutations and later development of leukemia. Future studies focused on understanding the biology of this compartment in Mll-AF9 mice will help in our understanding of the pathogenesis of leukemia and aid in the development of newer, more effective therapies.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1486-1486
Author(s):  
Marie-Claude Gaudreau ◽  
Ehssan Sharif Askari ◽  
Florian Heyd ◽  
Tarik Moroy

Abstract Abstract 1486 Poster Board I-509 Hematopoietic differentiation has to be tightly regulated since uncontrolled or exaggerated development of blood cells may lead to the development of leukemia or autoimmune diseases. Many mechanisms exist to control hematopoiesis on a molecular level, including the regulation of transcription, which has been intensely studied. However, new evidence suggests the process of alternative splicing to be an important regulator of the maturation and activation of blood- and immune effector cells. One of the factors that has been identified as a potential regulator of the immune response and controls alternative splicing is “heterogenous nuclear ribonucleoprotein L” (hnRNP L). This factor affects among others the alternative splicing of the CD45 gene, which encodes the major tyrosine phosphatase expressed on all hematopoietic cells. To investigate the biological role of hnRNP L as a regulator of alternative splicing in hematopoiesis, we have generated conditional hnRNP L knockout (KO) mice carrying floxed alleles that can be deleted by co expression of Cre recombinase. Both the inducible MxCre transgene or Vav-Cre transgene, which is active in all hematopoietic cells were introduced into hnRNP Lfl/fl mice. We found that the conditional deletion of hnRNP L by the Vav Cre transgene led to early mortality before birth (at stage E17.5) and flow cytometric analysis of fetal liver of hnRNP Lfl/fl, Vav-Cre mice or bone marrow from pIpC induced hnRNP Lfl/fl Mx-Cre mice showed a deficit in erythrocyte maturation. In addition, fetal thymi from hnRNP Lfl/fl X Vav-Cre mice were severely reduced in cellularity and showed disturbed T cell maturation. Moreover, the deletion of hnRNP L results in reduced numbers of Lin−Sca1+ckit+ (LSK) cells, common lymphoid progenitors (CLPs), common myeloid progenitors (CMPs), granulocyte-monocyte progenitors (GMPs) and megakaryocyte-erythrocyte progenitors (MEPs). Strikingly, while most of the progenitors and the short-term hematopoietic stem cells (HSCs) were affected by the deletion of hnRNP L, the population of long term HSCs was not reduced. We found a high percentage of Annexin V positive cells in the LSK population suggesting that the loss of progenitors and short term HSCs in hnRNP L deficient mice is due to an accelerated cell death. To test whether stem cells lacking hnRNP L were still functional, we sorted Lin−Sca1+ckit+ (LSK) cells and cultured them on either methylcellulose or the feeder cell lines OP9 and OP9-DL1. The co-culture with OP9 or OP9-DL1 cells demonstrated that hnRNP L−/− LSK cells had lost their potential to differentiate into B and T lymphocytes. Similarly, hnRNP L deficient LSK cells were unable to give rise to lymphoid, myeloid or erythroid colonies on methylcellulose. This suggests that hnRNP L is required to maintain not only the numbers of hematopoietic stem cells, but also their ability for multilineage differentiation. We conclude that the regulation of alternative splicing is an essential component of the regulatory network required to maintain hematopoietic differentiation and the functional integrity of hematopoietic stem cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2429-2429
Author(s):  
Tomohiko Ishibashi ◽  
Takafumi Yokota ◽  
Michiko Ichii ◽  
Yusuke Satoh ◽  
Takao Sudo ◽  
...  

Abstract Identification of novel markers associated with hematopoietic stem cells (HSCs) is important to progress basic and clinical research regarding the HSC biology. We previously reported that endothelial cell-selective adhesion molecule (ESAM) marks HSCs throughout life in mice (Yokota et al. Blood, 2009). We also demonstrated that ESAM can be a useful indicator of activated HSCs after bone marrow (BM) injury and that ESAM is functionally important for recovering hematopoiesis by using ESAM knockout mice (Sudo et al. J Immunol, 2012). However, the discrepancy between species has been a long-standing obstacle to apply findings in mice to human. For example, established murine HSC markers such as Sca-1 or CD150 are not expressed on human HSCs. Thus, it is important to know if ESAM marks HSCs beyond species and serves as a functional molecule for the HSC property, but information regarding ESAM expression in human HSCs has been quite limited. In this study, we have examined the ESAM expression pattern on human HSCs derived from diverse sources. In addition, we have performed functional assessment of the ESAM-expressing cells. Cord blood (CB), aspirated BM, and granulocyte-colony stimulating factor-mobilized peripheral blood (GMPB) were obtained from healthy donors. BM was also obtained from head of femora of patients who received the hip replacement surgery. All of the protocols were approved by the Institutional Review Board of Osaka University School of Medicine, and we obtained the written agreement form with informed consent from all participants. Mononuclear cells were separated using Ficoll centrifugation from CB, aspirated BM and GMPB. For preparation of BM cells adjacent to bone tissues, trabecular tissues of femora were treated with 2 mg/ml collagenase IV and DNase and gently agitated for 1 hour at 37 °C. Collected cells were analyzed using flow cytometry for cell surface expression of ESAM and other markers. Further, the CD34+ CD38−cells were fractionated according to the intensity of ESAM expression and evaluated in vivo and in vitro functional assays. Flow cytometry analyses revealed that the majority of CB CD34+ CD38− cells expressed ESAM. According to the expression level, CB CD34+ CD38− cells could be subdivided into three populations, namely ESAM−/Low, ESAMHigh, and ESAMBright. While all CB contained a robust ESAMHigh population in CD34+ CD38− cells, the percentage of ESAMBright cells varied widely among CB samples. The ESAMHigh CD34+ CD38− cells also expressed CD90 and CD133, which are known as HSC markers. Methylcellulose colony-forming assays and limiting dilution assays revealed that ESAMHigh fraction enriches primitive hematopoietic progenitors. Further, ESAMHigh cells also reconstituted the long-term human hematopoiesis in NOD/Shi-scid, IL-2Rγnull (NOG) mice. Therefore, as in mice, ESAMHighmarks authentic HSCs in human. On the other hand, ESAMBright CD34+ CD38− cells showed low colony-forming activities and no reconstitution of human hematopoiesis in NOG mice. These ESAMBright CD34+ CD38− cells expressed CD118/leukemia inhibitor factor receptor and endothelial markers such as VE-Cadherin, Flk-1, and CD146, but not CD45. These results suggested that ESAMBright cells in the CB CD34+ CD38− fraction are non-hematopoietic cells. With respect to the other HSC sources such as aspirated BM and GMPB, almost all CD34+ CD38− cells were ESAMHigh and ESAMBright cells were not found in this fraction. Interestingly, however, ESAMBright cells were found in the CD34+ CD38− fraction isolated from collagenase-treated femora. These BM-derived ESAMBright CD34+ CD38− cells expressed endothelial markers as did the CB-derived cells. They could generate CD31+endothelial cells, but not hematopoietic cells in coculture with MS5 stromal cells with vascular endothelial growth factor, stromal-cell-derived factor, and interleukin 16. In conclusion, ESAM expression serves as a marker to enrich HSCs in human regardless of the HSC sources. In addition, the very high intensity of this marker might be useful to isolate non-hematopoietic progenitors from CD34+ CD38− cells, which has been conventionally used as human HSCs. The common feature of ESAM expression of murine and human HSCs suggests a possibility that functional significance of ESAM expression obtained from mouse studies could be applicable to human. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 350-350
Author(s):  
Kyung-Hee Chang ◽  
Amitava Sengupta ◽  
Ramesh C Nayak ◽  
Angeles Duran ◽  
Sang Jun Lee ◽  
...  

Abstract In the bone marrow (BM), hematopoietic stem cells and progenitors (HSC/P) reside in specific anatomical niches. Among these niches, a functional osteoblast (Ob)-macrophage (MΦ) niche has been described where Ob and MΦ (so called "osteomacs") are in direct relationship. A connection between innate immunity surveillance and traffic of hematopoietic stem cells/progenitors (HSC/P) has been demonstrated but the regulatory signals that instruct immune regulation from MΦ and Ob on HSC/P circulation are unknown. The adaptor protein sequestosome 1 (Sqstm1), contains a Phox bemp1 (PB1) domain which regulates signal specificities through PB1-PB1 scaffolding and processes of autophagy. Using microenvironment and osteoblast-specific mice deficient in Sqstm1, we discovered that the deficiency of Sqstm1 results in macrophage contact-dependent activation of Ob IKK/NF-κB, in vitro and in vivo repression of Ccl4 (a CCR5 binding chemokine that has been shown to modulate microenvironment Cxcl12-mediated responses of HSC/P), HSC/P egress and deficient BM homing of wild-type HSC/P. Interestingly, while Ccl4 expression is practically undetectable in wild-type or Sqstm1-/- Ob, primary Ob co-cultured with wild-type BM-derived MΦ strongly upregulate Ccl4 expression, which returns to normal levels upon genetic deletion of Ob Sqstm1. We discovered that MΦ can activate an inflammatory pathway in wild-type Ob which include upregulation of activated focal adhesion kinase (p-FAK), IκB kinase (IKK), nuclear factor (NF)-κB and Ccl4 expression through direct cell-to-cell interaction. Sqstm1-/- Ob cocultured with MΦ strongly upregulated p-IKBα and NF-κB activity, downregulated Ccl4 expression and secretion and repressed osteogenesis. Forced expression of Sqstm1, but not of an oligomerization-deficient mutant, in Sqstm1-/- Ob restored normal levels of p-IKBα, NF-κB activity, Ccl4 expression and osteogenic differentiation, indicating that Sqstm1 dependent Ccl4 expression depends on localization to the autophagosome formation site. Finally, Ob Sqstm1 deficiency results in upregulation of Nbr1, a protein containing a PB1 interacting domain. Combined deficiency of Sqstm1 and Nbr1 rescues all in vivo and in vitro phenotypes of Sqstm1 deficiency related to osteogenesis and HSC/P egression in vivo. Together, this data indicated that Sqstm1 oligomerization and functional repression of its PB1 binding partner Nbr1 are required for Ob dependent Ccl4 production and HSC/P retention, resulting in a functional signaling network affecting at least three cell types. A functional ‘MΦ-Ob niche’ is required for HSC/P retention where Ob Sqstm1 is a negative regulator of MΦ dependent Ob NF-κB activation, Ob differentiation and BM HSC/P traffic to circulation. Disclosures Starczynowski: Celgene: Research Funding. Cancelas:Cerus Co: Research Funding; P2D Inc: Employment; Terumo BCT: Research Funding; Haemonetics Inc: Research Funding; MacoPharma LLC: Research Funding; Therapure Inc.: Consultancy, Research Funding; Biomedical Excellence for Safer Transfusion: Research Funding; New Health Sciences Inc: Consultancy.


Sign in / Sign up

Export Citation Format

Share Document