Concurrent Inhibition of Pim and Akt Pathways with Pim447 and Afuresertib Activates FOXO3a and Depletes c-Myc to Induce Synergistic Cell Death in Multiple Myeloma

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3007-3007
Author(s):  
Niamh Keane ◽  
Mairead Reidy ◽  
Alessandro Natoni ◽  
Michael O'Dwyer

Abstract Background Dual targeting of overlapping pathways in hematologic malignancies is an attractive therapeutic strategy to prevent resistance by compensatory signalling. The Pim and PI3K/AKT/mTOR pathways are proving effective drug targets in Multiple Myeloma (MM). Pim inhibition with novel compound Pim447 has demonstrated durable single agent activity in advanced disease (Raab et al ASH 2014, NCT01456689) while Akt inhibitor Afuresertib is effective in relapsed MM in combination with bortezomib (Voorhees et al ASH 2013, NCT01428492). Pim and Akt converge on mTOR activation, inhibition of p53, and the inactivation of BAD via phosphorylation. These redundant roles suggest potential for compensatory signalling on single pathway blockade. We have hence evaluated these clinically relevant drugs to provide a preclinical rationale for their combination in MM. Methods Pim447 and Afuresertib were evaluated against a panel of MM cell lines - NCI-H929, RPMI-8226, MM1S and KMS11 - and primary MM bone marrow aspirate samples. Cell Viability (AnnexinV/PI) and Cell Cycle (Edu/DAPI) analysis was performed up to 72 hours. Compusyn software was used for Chou-Talalay generated combination indices (CI <1 indicating synergy). Results Single treatment with either Pim447 or Afuresertib reduces proliferation and induces G1 accumulation but is not cytotoxic to MM cells. We tested 25 Pim447 and Afuresertib combinations against each cell line and found combinations of nanomolar concentrations result in >90% cell death at 48hours (CI 0.1-0.8) (Figure 1). For analysis of mechanism of synergy we selected the lowest synergistic combinations at which there is evidence of both drug/target engagement (i.e. hyperphosphorylation of Akt by Afuresertib and increase in Pim-2 by Pim447) and activity against validated downstream targets (FOXO3a for Afuresertib and BAD for Pim447). Interestingly, Pim inhibitor treatment leads to an increase in active phospho-Akt and phosphorylation of its target FOXO3a. Conversely, with Akt inhibition we demonstrate increased Pim-2 expression above basal levels, providing evidence of compensatory signalling on single target inhibition. In keeping with this, dual treatment results in greater inhibition of overlapping targets mTOR (measured via reduced outputs phospho-S6 and phospho-4EBP1), and phospho-BAD. Combination treatment uniquely depletes c-Myc in all cell lines, with single drugs having no effect (Figure 2 NCI-H929). Consistent with this, while neither inhibitor alone reduces phosphorylation of Akt target GSK3β the combination does so effectively, thus activating GSK3β which in turn can target c-Myc for ubiquitination. Further, with activation of GSK3β on dual blockade we demonstrate a concerted reduction in Cyclin D1. As noted above, Akt-induced (inactivating) phosphorylation of transcription factor FOXO3a is predictably inhibited by Afuresertib treatment. Unexpectedly active FOXO3a was upregulated on combination treatment and may mediate synergistic cytotoxicity via derepression of target genes. Pim447 and Afuresertib combination markedly potentiates G1 cell cycle arrest. This does not occur by induction of shared targets p53 or p21, but is associated with induction of FOXO3a transcriptional target p15. Further, in 3 of 4 cell lines the FOXO3a target p27 is increased to a greater extent by dual inhibitor treatment, consistent with its transcription on loss of repressor function of c-Myc. Co-culture with HS5 stromal cells affords protection against Afuresertib-mediated cell death in vitro, however, this is overcome and synergistic cell death observed with combination treatment. We have tested the combination in 10 primary MM samples to date. The inhibitors were active in all samples and the combination increased cell death in 6/10 (Figure 3). Conclusions Single treatment with Pim447 or Afuresertib is not cytotoxic in vitro at clinically relevant concentrations. However, combined inhibition activates GSK3β with reduction in Cyclin D1 and depletion of c-Myc, and induces transcriptional regulator FOXO3a resulting in impressive synergistic cell death. Ongoing preclinical assessment of this promising combination will include testing in the VK*MYC transgenic mouse model. Figure 1. Figure 1. Figure 2. Figure 2. Figure 3. Figure 3. Disclosures No relevant conflicts of interest to declare.

2004 ◽  
Vol 52 (5) ◽  
pp. 335-344 ◽  
Author(s):  
Naomi Gronich ◽  
Liat Drucker ◽  
Hava Shapiro ◽  
Judith Radnay ◽  
Shai Yarkoni ◽  
...  

BackgroundAccumulating reports indicate that statins widely prescribed for hypercholesteromia have antineoplastic activity. We hypothesized that because statins inhibit farnesylation of Ras that is often mutated in multiple myeloma (MM), as well as the production of interleukin (IL)-6, a key cytokine in MM, they may have antiproliferative and/or proapoptotic effects in this malignancy.MethodsU266, RPMI 8226, and ARH77 were treated with simvastatin (0-30 μM) for 5 days. The following aspects were evaluated: viability (IC50), cell cycle, cell death, cytoplasmic calcium ion levels, supernatant IL-6 levels, and tyrosine kinase activity.ResultsExposure of all cell lines to simvastatin resulted in reduced viability with IC50s of 4.5 μM for ARH77, 8 μM for RPMI 8226, and 13 μM for U266. The decreased viability is attributed to cell-cycle arrest (U266, G1; RPMI 8226, G2M) and cell death. ARH77 underwent apoptosis, whereas U266 and RPMI 8226 displayed a more necrotic form of death. Cytoplasmic calcium levels decreased significantly in all treated cell lines. IL-6 secretion from U266 cells was abrogated on treatment with simvastatin, whereas total tyrosine phosphorylation was unaffected.ConclusionsSimvastatin displays significant antimyeloma activity in vitro. Further research is warranted for elucidation of the modulated molecular pathways and clinical relevance.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1510-1510 ◽  
Author(s):  
Joseph D. Growney ◽  
Peter Atadja ◽  
Wenlin Shao ◽  
Youzhen Wang ◽  
Minying Pu ◽  
...  

Abstract Panobinostat (LBH589) is a highly potent oral pan-deacetylase (DAC) inhibitor currently undergoing clinical development in hematologic and solid malignancies. Here we report the effects of panobinostat on multiple myeloma (MM) cells in vitro and in a murine xenograft model in vivo. Panobinostat exhibited potent cytotoxic activity (IC50 &lt;10 nM) against 8 MM cell lines (KMS-12PE, KMS-18, LP-1, NCI H929, KMS-11, RPMI8226, OPM-2, and U266). Panobinostat has been shown to affect signals involved in MM cell-cycle arrest and cell death, and to induce apoptosis via mitochondrial perturbation. In addition, panobinostat has been shown to selectively induce cell death of plasma cells isolated from MM patients without toxicity to normal lymphocytes or granulocytes. To investigate the effect of panobinostat in vivo, a disseminated luciferized MM.1S xenograft mouse model was treated with vehicle or panobinostat 15 mg/kg by intraperitoneal (i.p.) administration qd×5 for 3 weeks. Panobinostat treatment reduced the burden of MM.1S tumor cells to 22% treated over control (T/C) relative to vehicle-treated animals. In addition, MM.1S tumor-bearing mice treated with panobinostat displayed reduced trabecular and cortical bone damage relative to vehicle-treated animals. The mean ± SEM trabecular bone density and cortical bone density (% Bone Volume/Total Volume) of panobinostat-treated animals was 14.5% ± 2.0 and 98.1% ± 0.4, respectively, compared with 2.2% ± 0.3 and 89.1% ± 1.5 in vehicle-treated animals. In combination with the proteosome inhibitor bortezomib (BZ), panobinostat displayed significant synergistic cytotoxicity without additional toxicity to normal bone marrow stromal cells in vitro. In the MM.1S-luciferase tumor mouse model, combined treatment with panobinostat at 10 mg/kg i.p. qd×5 for 4 weeks and BZ at 0.2 mg/kg intravenously 1qw for 4 weeks reduced tumor burden to 7% T/C relative to vehicle, panobinostat alone (31% T/C), or BZ alone (44% T/C). Disease progression, measured as median time to endpoint (TTE) was improved from 37 to 54 days (P&lt;0.05) by panobinostat and to 46 days by BZ (P&lt;0.05). The combination treatment further improved clinical outcome relative to both single-agent treatment groups (P&lt;0.05), extending the TTE to 73 days. In contrast to BZ, the immunomodulatory drug thalidomide (TH) had no significant single-agent activity at 150 mg/kg p.o. qd for 4 weeks. However, combination activity (18% T/C) was observed when TH was combined with a sub-efficacious dose of panobinostat (5 mg/kg, 64% T/C). Combination of panobinostat and TH increased the TTE to 50 days, compared with 37.5, 43, and 39.5 days (P&lt;0.05), respectively, for the vehicle, panobinostat, or TH as single agents. These data demonstrate that panobinostat exhibits significant anti-proliferative and anti-tumor activities on MM cells both in vitro and in vivo. Panobinostat, as a single agent or in combination with BZ or TH, is a promising therapy for MM, and these studies may provide the rationale for clinical evaluation of panobinostat and BZ combination in the treatment of MM.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1715-1715 ◽  
Author(s):  
Felix Meinel ◽  
Sonja Mandl-Weber ◽  
Philipp Baumann ◽  
Johann Leban ◽  
Ralf Schmidmaier

Abstract Multiple Myeloma (MM) is a fatal malignancy characterised by the accumulation and expansion of antibody producing plasma cells in the bone marrow. Evidence is increasing that nuclear factor kappa B (NFκB) is a promising target for new anti-myeloma therapies. In this study, we assessed the in vitro activity of V1810, a novel NFκB inhibitor. V1810 potently induces cell death in all tested MM cell lines (OPM-2, U266, NCI-H929, RPMI-8226) with an IC50 ranging between 5μM to 10μM as well as in primary MM cells from patients. Cell death induced by V1810 clearly shows biological features of apoptosis such as DNA fragmentation and caspase 3 cleavage. In OPM2, U266 and RPMI-8226 cells induction of apoptosis is accompanied by cell cycle arrest. Western blots revealed downregulation of cyclin D1 (U266) or cyclin D2 (OPM2, NCI-H929, RPMI-8226) respectively, but not cyclin D3. Consistent with the downregulation of cyclin D1/2, retinoblastoma protein was found to be hypophosphorylated. Considering that cyclin D1 and D2 are known to be NFκB target genes, this is in line with our finding that V1810 inhibits baseline NFκB activity in MM cells (36% relative reduction). Importantly, V1810 also abrogates NFκB activation induced by genotoxic drugs like melphalan and doxorubicin. Accordingly, V1810 and melphalan synergistically decrease MM cell viability. Taken together, V1810 induces apoptosis and cell cycle arrest in MM cells by inhibition of NFκB and overcomes NFκB mediated drug resistance to melphalan. The maximum tolerable dose (MTD) of V1810 in BalbC mice was 10mg/kg i.v. and plasma concentrations of 9.5μM are achievable in NRMI mice after 5mg/kg V1810 i.v., which corresponds well to the used in vitro concentrations. This study strongly supports the further development of NFkB inhibitors in MM, especially in combination with genotoxic drugs.


2021 ◽  
Vol 22 (19) ◽  
pp. 10761
Author(s):  
Ayano Nakamura ◽  
Susumu Suzuki ◽  
Jo Kanasugi ◽  
Masayuki Ejiri ◽  
Ichiro Hanamura ◽  
...  

The prognosis of multiple myeloma (MM) has drastically improved owing to the development of new drugs, such as proteasome inhibitors and immunomodulatory drugs. Nevertheless, MM is an extremely challenging disease, and many patients are still refractory to the existing therapies, thus requiring new treatment alternatives. Venetoclax is a selective, orally bioavailable inhibitor of BCL-2 that shows efficacy in MM not only as a single agent but also in combination therapy, especially for MM patients with translocation t(11;14). However, many patients are refractory to this drug. Here, we treated the MM cell lines KMS12PE and KMS27 with a combination treatment of venetoclax targeting BCL-2 and daratumumab targeting CD38 to evaluate the synergistic cytotoxicity of these drugs in vitro. MM cell lines were co-cultured with natural killer (NK) cells at an effector:target ratio of 0.3:1 in the presence of serial concentrations of daratumumab and venetoclax, and the resulting apoptotic MM cells were detected by flow cytometry using annexin V. These results indicated that the antibody-dependent cell-mediated NK cytotoxicity was enhanced in KMS12PE and KMS27 cells harboring t(11;14) with a high BCL-2 expression, suggesting that the combination treatment of venetoclax and daratumumab should be especially effective in patients with these characteristics.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5663-5663
Author(s):  
Mariana Bleker de Oliveira ◽  
Veruska Lia Fook Alves ◽  
Angela Isabel Eugenio ◽  
Rodrigo Carlini Fernando ◽  
Mihoko Yamamoto ◽  
...  

Abstract Background: Despite the absence of JAK1 and JAK2 mutations in multiple myeloma (MM), high levels of IL-6 constitutively activate the JAK/STAT pathway promoting survival and proliferation of tumor cells. Therefore, pharmacological inhibition of JAK proteins can be a potentially therapeutic strategy for myeloma treatment. Aims: 1) to identify expression of JAK1 and JAK2 in MM cell lines and in recently diagnosed MM patients; 2) to perform functional in vitro studies in MM cell lines treated with JAK/STAT pathway inhibitor (ruxolitinib), associated with drugs currently used in MM first line treatment (bortezomib, lenalidomide and dexamethasone), with and without co-culture with normal stromal cells; 3) to evaluate global gene expression of JAK/STAT pathway in cell lines treated with ruxolitinib to elucidate its mechanism of action in MM. Methods: JAK1 and JAK2 expression were analyzed in four cell lines (RPMI-8226, U266, SKO-007 and SKM-M2) and in bone marrow samples from 30 MM patients and 3 healthy controls by real time PCR. After IC50 calculation, drugs concentrations were: bortezomib (B) 10 nM for both RPMI-8226 and U266 cell lines; ruxolitinib (R) 30 µM for RPMI-8226 and 40 µM for U266 cell lines; lenalidomide (L) 10 µM for both cell lines; and dexamethasone (D) 1 µM for both cell lines. Apoptosis and cell cycle were evaluated by flow cytometry. PCR array for 92 JAK/STAT pathway related genes (Taqman® Array Human JAK/STAT Pathway, Applied Biosystems, Foster City, CA, USA) was performed in RPMI-8226 and U266 wild type and B+R treated cell lines, in duplicates. Results: Among the four cell lines, U266 presented the highest expression of JAK1 and JAK2 genes. JAK1 was overexpressed in 27% and JAK2 in 57% of 30 MM patients (considering at least 2-fold increase). After B+R treatment, RPMI-8226 showed increased number of cells in SubG0 phase (p<0.001) with reduction of cells in S (p<0.01) and G2/M (p<0.001) phases. In U266 cell line, there is a slight increase of cells in SubG0 phase (p<0.05). Also, after B+R treatment, both RPMI-8226 and U266 presented 50% of cells in late apoptosis, which was accompanied by reduction of expression levels of BCL-2 and BCL-XL anti-apoptotic genes. The expression profile of JAK/STAT pathway after B+R treatment showed that many JAK/STAT, Ras/Raf/MAPK and PI3K/Akt/mTOR pathways genes lost their expression, mainly in RPMI-8226, with insignificant changes in U266 expression pattern. Co-culture of RPMI-8226 with normal stromal cell line HS5 protected tumor cells from apoptosis, as the number of cells in late apoptosis decreased from 50% to 32% (p<0.001). The addition of immunomodulatory drug lenalidomide to the schedule (B+R+L) increased tumor cell death from 32% to 73% in co-culture (p<0.001). Despite the impressive results, B+R+L schedule was equivalent to currently used treatment for standard risk MM patients B+L+D (67% of cell death, p>0.05), in co-culture. Conclusion: B+R combination induced cell cycle arrest and apoptosis in U266 and RPMI-8226. The new drug combination B+R+L has in vitro results comparable with B+L+D and presents an alternative for MM treatment of almost 60% of cases bearing JAK2 overexpression. Our results support future studies using JAK inhibitors as an alternative for MM treatment in a Precision Medicine approach. Financial support: FAPESP 2010/17668-6 and CNPq. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 19 (2) ◽  
pp. 112-119 ◽  
Author(s):  
Mariana B. de Oliveira ◽  
Luiz F.G. Sanson ◽  
Angela I.P. Eugenio ◽  
Rebecca S.S. Barbosa-Dantas ◽  
Gisele W.B. Colleoni

Introduction:Multiple myeloma (MM) cells accumulate in the bone marrow and produce enormous quantities of immunoglobulins, causing endoplasmatic reticulum stress and activation of protein handling machinery, such as heat shock protein response, autophagy and unfolded protein response (UPR).Methods:We evaluated cell lines viability after treatment with bortezomib (B) in combination with HSP70 (VER-15508) and autophagy (SBI-0206965) or UPR (STF- 083010) inhibitors.Results:For RPMI-8226, after 72 hours of treatment with B+VER+STF or B+VER+SBI, we observed 15% of viable cells, but treatment with B alone was better (90% of cell death). For U266, treatment with B+VER+STF or with B+VER+SBI for 72 hours resulted in 20% of cell viability and both treatments were better than treatment with B alone (40% of cell death). After both triplet combinations, RPMI-8226 and U266 presented the overexpression of XBP-1 UPR protein, suggesting that it is acting as a compensatory mechanism, in an attempt of the cell to handle the otherwise lethal large amount of immunoglobulin overload.Conclusion:Our in vitro results provide additional evidence that combinations of protein homeostasis inhibitors might be explored as treatment options for MM.


Cancers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 354 ◽  
Author(s):  
Mouna Sdiri ◽  
Xiangmin Li ◽  
William Du ◽  
Safia El-Bok ◽  
Yi-Zhen Xie ◽  
...  

The extensive applications of Cynomorium species and their rich bioactive secondary metabolites have inspired many pharmacological investigations. Previous research has been conducted to examine the biological activities and numerous interesting pharmaceutical activities have been reported. However, the antitumor activities of these species are unclear. To understand the potential anticancer activity, we screened Cynomorium coccineum and Cynomorium songaricum using three different extracts of each species. In this study, the selected extracts were evaluated for their ability to decrease survival rates of five different cancer cell lines. We compared the cytotoxicity of the three different extracts to the anticancer drug vinblastine and one of the most well-known medicinal mushrooms Amaurederma rude. We found that the water and alcohol extracts of C. coccineum at the very low concentrations possessed very high capacity in decreasing the cancer cells viability with a potential inhibition of tumorigenesis. Based on these primitive data, we subsequently tested the ethanol and the water extracts of C. coccineum, respectively in in vitro and in vivo assays. Cell cycle progression and induction of programmed cell death were investigated at both biological and molecular levels to understand the mechanism of the antitumor inhibitory action of the C. coccineum. The in vitro experiments showed that the treated cancer cells formed fewer and smaller colonies than the untreated cells. Cell cycle progression was inhibited, and the ethanol extract of C. coccineum at a low concentration induced accumulation of cells in the G1 phase. We also found that the C. coccineum’s extracts suppressed viability of two murine cancer cell lines. In the in vivo experiments, we injected mice with murine cancer cell line B16, followed by peritoneal injection of the water extract. The treatment prolonged mouse survival significantly. The tumors grew at a slower rate than the control. Down-regulation of c-myc expression appeared to be associated with these effects. Further investigation showed that treatment with C. coccineum induced the overexpression of the tumor suppressor Foxo3 and other molecules involved in inducing autophagy. These results showed that the C. coccineum extract exerts its antiproliferative activity through the induction of cell death pathway. Thus, the Cynomorium plants appear to be a promising source of new antineoplastic compounds.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5016
Author(s):  
Aveen N. Adham ◽  
Mohamed Elamir F. Hegazy ◽  
Alaadin M. Naqishbandi ◽  
Thomas Efferth

Thymus vulgaris and Arctium lappa have been used as a folk remedy in the Iraqi Kurdistan region to deal with different health problems. The aim of the current study is to investigate the cytotoxicity of T. vulgaris and A. lappa in leukemia and multiple myeloma (MM) cell lines and determine the mode of cell death triggered by the most potent cytotoxic fractions of both plants in MM. Resazurin assay was used to evaluate cytotoxic and ferroptosis activity, apoptosis, and modulation in the cell cycle phase were investigated via Annexin V-FITC/PI dual stain and cell-cycle arrest assays. Furthermore, we used western blotting assay for the determination of autophagy cell death. n-Hexane, chloroform, ethyl acetate, and butanol fractions of T. vulgaris and A. lappa exhibited cytotoxicity in CCRF-CEM and CEM/ADR 5000 cell lines at concentration range 0.001–100 μg/mL with potential activity revealed by chloroform and ethyl acetate fractions. NCI-H929 displayed pronounced sensitivity towards T. vulgaris (TCF) and A. lappa (ACF) chloroform fractions with IC50 values of 6.49 ± 1.48 and 21.9 ± 0.69 μg/mL, respectively. TCF induced apoptosis in NCI-H929 cells with a higher ratio (71%), compared to ACF (50%) at 4 × IC50. ACF demonstrated more potent autophagy activity than TCF. TCF and ACF induced cell cycle arrest and ferroptosis. Apigenin and nobiletin were identified in TCF, while nobiletin, ursolic acid, and lupeol were the main compounds identified in ACF. T. vulgaris and A. lappa could be considered as potential herbal drug candidates, which arrest cancer cell proliferation by induction of apoptosis, autophagic, and ferroptosis.


Cancers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 970 ◽  
Author(s):  
Jessica Bordini ◽  
Federica Morisi ◽  
Fulvia Cerruti ◽  
Paolo Cascio ◽  
Clara Camaschella ◽  
...  

Adaptation to import iron for proliferation makes cancer cells potentially sensitive to iron toxicity. Iron loading impairs multiple myeloma (MM) cell proliferation and increases the efficacy of the proteasome inhibitor bortezomib. Here, we defined the mechanisms of iron toxicity in MM.1S, U266, H929, and OPM-2 MM cell lines, and validated this strategy in preclinical studies using Vk*MYC mice as MM model. High-dose ferric ammonium citrate triggered cell death in all cell lines tested, increasing malondialdehyde levels, the by-product of lipid peroxidation and index of ferroptosis. In addition, iron exposure caused dose-dependent accumulation of polyubiquitinated proteins in highly iron-sensitive MM.1S and H929 cells, suggesting that proteasome workload contributes to iron sensitivity. Accordingly, high iron concentrations inhibited the proteasomal chymotrypsin-like activity of 26S particles and of MM cellular extracts in vitro. In all MM cells, bortezomib-iron combination induced persistent lipid damage, exacerbated bortezomib-induced polyubiquitinated proteins accumulation, and triggered cell death more efficiently than individual treatments. In Vk*MYC mice, addition of iron dextran or ferric carboxymaltose to the bortezomib-melphalan-prednisone (VMP) regimen increased the therapeutic response and prolonged remission without causing evident toxicity. We conclude that iron loading interferes both with redox and protein homeostasis, a property that can be exploited to design novel combination strategies including iron supplementation, to increase the efficacy of current MM therapies.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4806-4806
Author(s):  
Jeannine Silberman ◽  
Kimberly Dalbey ◽  
Claire Torre ◽  
Ebenezer David ◽  
Leif Bergsagel ◽  
...  

Abstract Backround: Dysregulation of the PI3K/Akt signal transduction pathway has been implicated in the development of a number of malignancies, including multiple myeloma (MM). This cellular signaling mechanism and its downstream targets (eg mTOR) regulate cell growth, proliferation and apoptosis. SF1126 (Semafore) is a water soluble prodrug of the pan-PI3K inhibitor, LY294002, whose anti-proliferative and pro-apoptotic activity has been well described in the literature. Preclinical studies using SF1126 in a variety of malignancies including glioma, prostate, non-small cell lung cancer, and breast cancer appear promising and have demonstrated profound antiangiogenic effects mediated through VEGF inhibition. Aim: To demonstrate in vitro anti-myeloma activity of SF1126, alone and in combination with dexamethasone, bortezomib, and melphalan and evaluate their effects on downstream targets of PI3K/Akt. Methods: MM cell lines (MM.1R, MM.1S, RPMI 8226) were treated with SF1126 (1–100uM), dexamethasone (5uM), bortezomib (5nM), melphalan (10uM) alone, and in combination. Growth inhibition following treatment was measured by MTT assay at 24 and 48 hours. Apoptosis was assessed by annexin-V binding assay using flow cytometry. Immunoblot analysis was performed to measure downstream targets of Akt including: p-PDK1 and mTOR (4E-BP1). Results: A clear dose response was established with an IC50 of 8.75uM in the MM.1R and 7.5uM in the MM.1S cell lines at 48 hours. At 24 and 48 hours, 5uM SF1126 alone resulted in 80% and 64% cell viability by MTT assay, respectively, in the MM.1R cell line. The combination of 5uM SF1126 with conventional agents was then tested in the MM.1R cell line. Combination with 5uM dexamethasone enhanced the efficacy of 5uM SF1126 by 26% at 48 hours. Combination with 10uM melphalan enhanced the efficacy of 5uM SF1126 by 20% at 24 hours. The combination with 5nM bortezomib enhanced the efficacy of 5uM SF1126 by 23% at 48 hours. Given prior experience demonstrating that short exposure to bortezomib activates Akt, we tested sequential administration of bortezomib and SF1126 in the MM.1R cell line. Optimal cell death was induced with bortezomib prior to SF1126, followed by concurrent administration. Immunoblot analysis of p-PDK1, downstream mTOR target (4E-BP1) were performed on the MM.1S cell line treated with 5, 10, 20, and 50uM SF1126 at 12 and 24 hours. At the 12 hour time point, p-PDK-1 appeared to increase, but was significantly reduced by 48 hours. A similar pattern of initial upregulation followed by reduction by 24 hours was seen with the mTOR protein 4E-BP1. Conclusion: SF1126 has dose dependent, in vitro activity in several multiple myeloma cell lines both as a single agent and in combination with dexamethasone, bortezomib, and melphalan. The addition of SF1126 to dexamethasone in a dexamethasone resistant cell line results in increased cell death, possibly by overcoming resistance mechanisms. The addition of SF1126 to bortezomib and melphalan also resulted in increased growth inhibition over either agent alone. These results warrant further study of this promising new pan-PI3K/Akt inhibitor.


Sign in / Sign up

Export Citation Format

Share Document