scholarly journals Prognostic Impact of ABCA3 Expression in Pediatric Acute Myeloid Leukemia

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1694-1694
Author(s):  
Antony Ceraulo ◽  
Aminetou Mint-Mohamed ◽  
Delphine Maucort-Boulch ◽  
Helene Lapillone ◽  
Guy Leverger ◽  
...  

Abstract Background. Despite progress in the molecular and genetic classification of pediatric acute myeloid leukemia (AML), the prognosis remains heterogeneous. The ATP-binding cassette transporter A3 (ABCA3) seems specifically involved in the resistance of pediatric AML to intensive chemotherapy. However, studies having investigated the prognostic impact of ABCA3 expression have yielded conflicting results with respect to patient outcomes while the small sample size of these studies precluded the use of multivariate analysis. Here we investigated the prognostic impact of ABCA3 expression in a representative series of homogeneously treated pediatric AML. Methods. Samples derived from 233 patients with available high-quality RNA and enrolled in the ELAM2 protocol (NCT00149162). qRTPCR amplification of 2 conserved ABCA3 mRNA sequences was performed with GUS and ABL as reference genes. Primer sets were complementary to exons 6-7 and exons 19-20 junctions. Patients were classified according to their standardized cytogenetic and molecular (NPM1 mutations, FLT3-ITD, CEBPA double mutations) risk subgroups (Rubnitz JE, Blood 2012;119:5980-5988, Creutzig U, Blood 2012;120:3187-3205). Treatment consisted of 1 induction course (AraC and mitoxantrone) and 3 consolidation courses (course 1 and 3 with high dose AraC); all children with either intermediate or high-risk disease were candidates for hematopoietic stem cell transplant (HSCT) in complete remission (CR) after 1 to 2 consolidation courses. Results. The discovery cohort included 120 patients. Median age, median WBC, CR rate, relapse rate, median follow-up, 5-years EFS, DFS, and OS were 9.4 years, 19.3 G/L, 95%, 29%, 60 months, 58±6%, 61±6%, and 71±5 months, respectively. The two primer sets yielded consistent results (R=0.9, p<10-4, Spearman Rank Correlation). Lower ABCA3 expression was positively associated with CBFB-MYH11 AML (p=0.002) and thereby with favorable cytogenetics (p=0.036) and low-risk AML (p=0.027). Higher ABCA3 expression was associated with higher relapse rate (p=0.006), shorter EFS (5-years, 34±9 vs 61±6 % p=0.0005), DFS (36±9 vs 62±6% p=0.0028), and OS (49±12 vs 79.5±5% p=0.0007). Multivariate analyses identified age, WBC, risk group, and ABCA3 expression as independent prognostic factors for EFS, DFS, and OS (Table 1). The validation cohort included 113 patients in whom the proportions of AML1-ETO- and MLL-positive AML were significantly higher than in the discovery cohort: 26,5% vs 6,7% (p<10-4) and 24.8 vs 14.2% (p=0.03). There was no significant difference in patients' outcome between the 2 cohorts. Using the same cutoff value in the validation cohort, higher ABCA3 expression remained significantly associated with shorter 5-years EFS: 63±7% vs 43±9% (p=0.025) with a trend for shorter DFS: 45±9 vs 53±11% (p=0.065). Multivariate analyses identified ABCA3 expression as an independent negative prognostic factor for EFS and DFS (Table 1). In the entire patients population, ABCA3 expression independently predicted EFS, DFS, and OS (not shown). In the low- (n=74) and adverse-risk (n=59) groups, higher ABCA3 expression remained associated with shorter 5-years EFS (low: 46±12 vs 75±7%, p=0.006; adverse: 12±10 vs 44±16%, p=0.018), DFS (low: 49±13 vs 75±7%; high: 12±11 vs 45±16%, p=0.016), and OS (low: 76±10 vs 94±4%; adverse: 32±14 vs 57±18%, p=0.046). Conclusion. ABCA3 expression represents an independent prognostic factor in pediatric AML. As they indicate that the level of ABCA3 expression is significantly associated with survival for currently accepted cytogenetic and molecular prognostic categories, our findings suggest that assessing ABCA3 expression will permit a better assessment of disease risk. Finally our results suggest that inhibiting ABCA3 expression, such as with indomethacin, could be beneficial in order to overcome drug resistance in pediatric AML. Disclosures No relevant conflicts of interest to declare.

Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 4817
Author(s):  
Lina Marie Hoffmeister ◽  
Eser Orhan ◽  
Christiane Walter ◽  
Naghmeh Niktoreh ◽  
Helmut Hanenberg ◽  
...  

KMT2A rearrangements (KMT2A-r) are among the most common structural aberrations in pediatric acute myeloid leukemia (AML) and are very important for the risk group stratification of patients. Here, we report the outcome of 967 pediatric AML patients with a known KMT2A-r status. The large cohort was characterized by morphology, multicolor flow cytometry, classical cytogenetics and mutation analysis via panel sequencing. In total, the blasts of 241 patients (24.9%) showed KMT2A-r. KMT2A-r is associated with FAB M5, a high white blood cell count and younger age at diagnosis. When subgroups were combined, KMT2A-r had no impact on event-free survival (EFS) and overall survival (OS); however, various subgroups showed a different prognosis, ranging from a <50% OS for KMT2A/AFDN (n = 11) to a 100% chance of survival for patients harboring the rare translocation KMT2A/SEPTIN9 (n = 3, follow up of 3.7 to 9.6 years). A positive correlation of KMT2A-r with KRAS mutations (p < 0.001) existed, albeit without any prognostic impact. In addition, FLT3-ITDs were detected less frequently in AML with KMT2A-r (p < 0.001). Furthermore, KMT2A-r were mutually exclusive, with mutations in NPM1 (p = 0.002), KIT (p = 0.036), WT1 (p < 0.001) and CEBPA (p = 0.006), and translocations NUP98/NSD1 (p = 0.009), RUNX1/RUNX1T1 (p = 0.003) and CBFB/MYH11 (p = 0.006). In the 346 patients tested for CSPG4 expression, a correlation between CSPG4 expression and KMT2A-r was confirmed. However, CSPG4 expression also occurred in patients without KMT2A-r and had no significant prognostic impact on EFS and OS.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 895
Author(s):  
Olga Krali ◽  
Josefine Palle ◽  
Christofer L. Bäcklin ◽  
Jonas Abrahamsson ◽  
Ulrika Norén-Nyström ◽  
...  

Pediatric acute myeloid leukemia (AML) is a heterogeneous disease composed of clinically relevant subtypes defined by recurrent cytogenetic aberrations. The majority of the aberrations used in risk grouping for treatment decisions are extensively studied, but still a large proportion of pediatric AML patients remain cytogenetically undefined and would therefore benefit from additional molecular investigation. As aberrant epigenetic regulation has been widely observed during leukemogenesis, we hypothesized that DNA methylation signatures could be used to predict molecular subtypes and identify signatures with prognostic impact in AML. To study genome-wide DNA methylation, we analyzed 123 diagnostic and 19 relapse AML samples on Illumina 450k DNA methylation arrays. We designed and validated DNA methylation-based classifiers for AML cytogenetic subtype, resulting in an overall test accuracy of 91%. Furthermore, we identified methylation signatures associated with outcome in t(8;21)/RUNX1-RUNX1T1, normal karyotype, and MLL/KMT2A-rearranged subgroups (p < 0.01). Overall, these results further underscore the clinical value of DNA methylation analysis in AML.


2010 ◽  
Vol 28 (28) ◽  
pp. e523-e526 ◽  
Author(s):  
Iris H.I.M. Hollink ◽  
Marry M. van den Heuvel-Eibrink ◽  
Martin Zimmermann ◽  
Brian V. Balgobind ◽  
Susan T.C.J.M. Arentsen-Peters ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Feng Jiang ◽  
Xin-Yu Wang ◽  
Ming-Yan Wang ◽  
Yan Mao ◽  
Xiao-Lin Miao ◽  
...  

Objective. The aim of this research was to create a new genetic signature of immune checkpoint-associated genes as a prognostic method for pediatric acute myeloid leukemia (AML). Methods. Transcriptome profiles and clinical follow-up details were obtained in Therapeutically Applicable Research to Generate Effective Treatments (TARGET), a database of pediatric tumors. Secondary data was collected from the Gene Expression Omnibus (GEO) to test the observations. In univariate Cox regression and multivariate Cox regression studies, the expression of immune checkpoint-related genes was studied. A three-mRNA signature was developed for predicting pediatric AML patient survival. Furthermore, the GEO cohort was used to confirm the reliability. A bioinformatics method was utilized to identify the diagnostic and prognostic value. Results. A three-gene (STAT1, BATF, EML4) signature was developed to identify patients into two danger categories depending on their OS. A multivariate regression study showed that the immune checkpoint-related signature (STAT1, BATF, EML4) was an independent indicator of pediatric AML. By immune cell subtypes analyses, the signature was correlated with multiple subtypes of immune cells. Conclusion. In summary, our three-gene signature can be a useful tool to predict the OS in AML patients.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5228-5228
Author(s):  
Genki Yamato ◽  
Hiroki Yamaguchi ◽  
Hiroshi Handa ◽  
Norio Shiba ◽  
Satoshi Wakita ◽  
...  

Abstract Background Acute myeloid leukemia (AML) is a complex disease caused by various genetic alterations. Some prognosis-associated cytogenetic aberrations or gene mutations such as FLT3-internal tandem duplication (ITD), t(8;21)(q22;q22)/RUNX1-RUNX1T1, and inv(16)(p13q22)/CBFB-MYH11 have been found and used to stratify the risk. Numerous gene mutations have been implicated in the pathogenesis of AML, including mutations of DNMT3A, IDH1/2, TET2 and EZH2 in addition to RAS, KIT, NPM1, CEBPA and FLT3in the recent development of massively parallel sequencing technologies. However, even after incorporating these molecular markers, the prognosis is unclear in a subset of AML patients. Recently, NUP98-NSD1 fusion gene was identified as a poor prognostic factor for AML. We have reported that all pediatric AML patients with NUP98-NSD1 fusion showed high expression of the PR domain containing 16 (PRDM16; also known as MEL1) gene, which is a zinc finger transcription factor located near the breakpoint at 1p36. PRDM16 is highly homologous to MDS1/EVI1, which is an alternatively spliced transcript of EVI1. Furthermore, PRDM16 is essential for hematopoietic stem cell maintenance and remarkable as a candidate gene to induce leukemogenesis. Recent reports revealed that high PRDM16 expression was a significant marker to predict poor prognosis in pediatric AML. However, the significance of PRDM16 expression is unclear in adult AML patients. Methods A total of 151 adult AML patients (136 patients with de novo AML and 15 patients with relapsed AML) were analyzed. They were referred to our institution between 2004 and 2015 and our collaborating center between 1996 and 2013. The median length of follow-up for censored patients was 30.6 months. Quantitative RT-PCR analysis was performed using the 7900HT Fast Real Time PCR System with TaqMan Gene Expression Master Mix and TaqMan Gene Expression Assay. In addition to PRDM16, ABL1 was also evaluated as a control gene. We investigated the correlations between PRDM16 gene expression and other genetic alterations, such as FLT3-ITD, NPM1, and DNMT3A, and clarified the prognostic impact of PRDM16 expression in adult AML patients. Mutation analyses were performed by direct sequence analysis, Mutation Biased PCR, and the next-generation sequencer Ion PGM. Results PRDM16 overexpression was identified in 29% (44/151) of adult AML patients. High PRDM16 expression correlated with higher white blood cell counts in peripheral blood and higher blast ratio in bone marrow at diagnosis; higher coincidence of mutation in NPM1 (P = 0.003) and DNMT3A (P = 0.009); and lower coincidence of t(8;21) (P = 0.010), low-risk group (P = 0.008), and mutation in BCOR (P = 0.049). Conversely, there were no significant differences in age at diagnosis and sex distribution. Patients with high PRDM16 expression tended to be low frequency in M2 (P = 0.081) subtype, and the remaining subtype had no significant differences between high and low PRDM16 expression. Remarkably, PRDM16 overexpression patients were frequently observed in non-complete remission (55.8% vs. 26.3%, P = 0.001). Patients with high PRDM16 expression tended to have a cumulative incidence of FLT3-ITD (37% vs. 21%, P = 0.089) and MLL-PTD (15% vs. 5%, P = 0.121). We analyzed the prognosis of 139 patients who were traceable. The overall survival (OS) and median survival time (MST) of patients with high PRDM16 expression were significantly worse than those of patients with low expression (5-year OS, 17% vs. 32%; MST, 287 days vs. 673 days; P = 0.004). This trend was also significant among patients aged <65 years (5-year OS, 25% vs. 48%; MST, 361 days vs. 1565 days, P = 0.013). Moreover, high PRDM16 expression was a significant prognostic factor for FLT3-ITD negative patients aged < 65 years in the intermediate cytogenetic risk group (5-year OS, 29% vs. 58%; MST, 215 days vs. undefined; P = 0.032). Conclusions We investigated the correlations among PRDM16 expression, clinical features, and other genetic alterations to reveal clinical and prognostic significance. High PRDM16 expression was independently associated with non-CR and adverse outcomes in adult AML patients, as well as pediatric AML patients. Our finding indicated that the same pathogenesis may exist in both adult and pediatric AML patients with respect to PRDM16 expression, and measuring PRDM16 expression was a powerful tool to predict the prognosis of adult AML patients. Disclosures Inokuchi: Bristol-Myers Squibb: Honoraria, Research Funding; Novartis: Honoraria; Celgene: Honoraria; Pfizer: Honoraria.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3263-3263
Author(s):  
Luca Lo Nigro ◽  
Laura Sainati ◽  
Anna Leszl ◽  
Elena Mirabile ◽  
Monica Spinelli ◽  
...  

Abstract Background: Myelomonocytic precursors from acute or chronic leukemias can differentiate to dendritic cells in vitro, but leukemias with a dendritic cell immunophenotype are rare, have been reported mainly in adults, and their molecular pathogenesis is unknown. Dendritic cells are classified as Langherans, myeloid and lymphoid/plasmacytoid cells, but leukemias arising from dendritic cells are unclassified in the FAB system. We identified a new entity of pediatric acute myeloid leukemia (AML) presenting with morphologic and immunophenotypic features of mature dendritic cells, which is characterized by MLL gene translocation. Methods and Results: Standard methods were used to characterize the morphology, immunophenotype, karyotype and MLL translocations in 3 cases of pediatric AML. The patients included two boys and one girl diagnosed with AML between 1–6 years old. Their clinical histories and findings included fever, pallor, abdominal and joint pain, adenopathy, hepatosplenomegaly, normal WBC counts but anemia and thrombocytopenia. and no evidence of CNS disease. The bone marrow aspirates were hypocellular and replaced completely by large blasts with irregular nuclei, slightly basophilic cytoplasm, and prominent cytoplasmic projections. There were no cytoplasmatic granules or phagocytosis. Myeloperoxidase and alpha napthyl esterase reactions were negative, excluding FAB M5 AML, and the morphology was not consistent with any standard FAB morphologic diagnosis. The leukemic blasts in all three cases were CD83+, CD86+, CD116+, consistent with differentiated myeloid dendritic cells, and did not express CD34, CD56 or CD117. MLL translocations were identified in all 3 cases. In the first case FISH analysis showed t(10;11)(p12;q23) and RT-PCR identified and a ‘5-MLL-AF10-3’ fusion transcript. In the second case FISH analysis showed t(9;11)(p22;q23) and RT-PCR identified and a ‘5-MLL-AF9-3’ fusion transcript. In the remaining case, the MLL gene rearrangement was identified by Southern blot analysis and RT-PCR showed an MLL-AF9 fusion transcript. The fusion transcripts in all 3 cases were in-frame. Remission induction was achieved with intensive chemotherapy, and all three patients have remained in durable remission for 30–60 months after hematopoietic stem cell transplantation. Conclusions. We have characterized a new pediatric AML entity with features of mature dendritic cells, MLL translocation and an apparently favorable prognosis. The in-frame MLL fusion transcripts suggest that chimeric MLL oncoproteins underlie its pathogenesis. The partner genes in all 3 cases were known partner genes of MLL that encode transcription factors. This study increases the spectrum of leukemias with MLL translocations. Comprehensive morphological, immunophenotypic, cytogenetic and molecular analyses are critical for this diagnosis, and will reveal its frequency and spectrum as additional cases are uncovered.


Author(s):  
Antony Ceraulo ◽  
Hélène Lapillonne ◽  
Meyling H Cheok ◽  
Claude Preudhomme ◽  
Hervé Dombret ◽  
...  

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1370-1370 ◽  
Author(s):  
Anilkumar Gopalakrishnapillai ◽  
Allison Kaeding ◽  
Christoph Schatz ◽  
Anette Sommer ◽  
Soheil Meshinchi ◽  
...  

Pediatric acute myeloid leukemia (AML) continues to have a cure rate of only 50% despite the use of highly intensive cytotoxic chemotherapy. Transcriptome sequencing of several AML samples by the NCI/COG TARGET AML Initiative identified mesothelin (MSLN) to be highly overexpressed in about one-third of pediatric AML (Tarlock et al., Blood, 128:2873, 2016). Because MSLN is not expressed in normal bone marrow samples (Fan et al., Blood, 130:3792, 2017) and only to a low level in other human organs and tissues, MSLN is an attractive therapeutic target for pediatric AML (Kaeding et al., Blood, 130:2641, 2017). The anti-MSLN antibody-drug conjugate (ADC) anetumab ravtansine (BAY 94-9343) generated by conjugating MSLN-antibody with tubulin inhibitor DM4 (Meso-ADC), and isotype control antibody conjugated with the same drug (Iso-ADC) were used to evaluate the efficacy of MSLN targeting in vivo. MSLN-overexpressing K562 (K562-MSLN) CML cells and MV4;11 (MV4;11-MSLN) AML cells were generated by lentiviral transduction of MSLN cDNA. Cell line-derived xenografts (CDX) were created by injecting the MSLN-transduced or parental (MSLN-) cells into NSG-SGM3 mice via the tail vein. Mice were randomly assigned to treatment groups when the median percentage of human cells in mouse peripheral blood was greater than 0.5%. K562-MSLN CDX mice treated with Meso-ADC (5 mg/Kg Q3dx3, i.v.) survived a median of 46 days longer than those treated with Iso-ADC (P=0.0011) and significantly longer than comparison groups, including K562-MSLN CDX mice treated with daunorubicin and Ara-C (DA, P=0.0008) or untreated (P=0.0018) (Fig. 1A). Median survival of K562 CDX mice treated with Meso-ADC, Iso-ADC, or untreated was similar (Fig. 1B). MV4;11-MSLN CDX mice treated with Meso-ADC exhibited complete remission and remained disease-free at 1 year post cell injection, with AML cell burden remaining &lt;0.1% throughout the study period (Fig. 1C). In contrast, MV;11-MSLN CDX mice treated with Iso-ADC or untreated succumbed to disease at 72 and 38 days, respectively. Taken together, these results indicate that Meso-ADC was efficacious in reducing leukemia burden, and this effect required MSLN expression in target cells. We have generated a panel of patient-derived xenograft (PDX) lines by transplanting and serially propagating primary pediatric AML samples into NSG-SGM3 mice. The efficacy of Meso-ADC was also evaluated in a systemic PDX model using a MSLN+ PDX line (NTPL-146). NTPL-146 PDX mice treated with Meso-ADC (5 mg/Kg, Q3dx3 -x2 cycles) survived a median of 50 days longer than those treated with Iso-ADC (P=0.0018, Fig. 1D, arrows indicate time when each treatment cycle was initiated). In an independent experiment with NTPL-146 PDX mice, a survival benefit of Meso-ADC treatment over no treatment was observed after 1 cycle of Meso-ADC treatment (5 mg/Kg, Q3dx3, P=0.0019, Fig. 1E). Additionally, a combination therapy strategy with daunorubicin and Ara-C followed by Meso-ADC (DA -&gt; Meso-ADC) resulted in improved median survival over Meso-ADC (P=0.0027) or DA treatment alone (P=0.0018) (Fig. 1E). The disseminated MSLN+ leukemia mouse models described herein support MSLN-targeted antibody-drug conjugate as a potential treatment strategy in MSLN+ AML. Furthermore, we provide the first in vivo demonstration of synergy between MSLN-targeted therapy and conventional chemotherapy in MSLN+ AML, warranting additional investigation to validate and optimize novel strategies for combination therapy. Figure 1 Disclosures Kaeding: Celgene: Employment. Schatz:Bayer AG: Employment. Sommer:Bayer AG: Employment, Equity Ownership.


Oncotarget ◽  
2019 ◽  
Vol 10 (13) ◽  
pp. 1334-1343
Author(s):  
Anudishi Tyagi ◽  
Raja Pramanik ◽  
Sreenivas Vishnubhatla ◽  
Radhika Bakhshi ◽  
Sameer Bakhshi

Sign in / Sign up

Export Citation Format

Share Document