scholarly journals Marginal Zone B Cells Regulate RBC Alloimmunization Toward Distinct RBC Alloantigens

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3847-3847
Author(s):  
Patricia E. Zerra ◽  
Seema R. Patel ◽  
Connie M. Arthur ◽  
Kathryn R. Girard-Pierce ◽  
Ashley Bennett ◽  
...  

Abstract Background: While red blood cell (RBC) transfusion can be beneficial, exposure to allogeneic RBCs can result in the development of RBC alloantibodies that can make it difficult to obtain compatible RBCs for future transfusions. Aside from phenotype matching protocols, no strategy currently exists that is capable of preventing RBC alloimmunization following therapeutic transfusion. As RBC alloantigens represent diverse determinants capable of driving distinct immune pathways, common immunological nodes must be identified in order to successfully prevent RBC alloimmunization against a variety of different alloantigens. Recent results demonstrate that marginal zone (MZ) B cells mediate anti-KEL antibody formation in the complete absence of CD4 T cells. However, whether MZ B cells similarly regulate RBC alloantibody formation against other RBC alloantigens remains unknown. As a result, we examined the role of MZ B cells and CD4 T cells in the development of RBC alloantibodies following exposure to the HOD (hen egg lysozyme, ovalbumin and duffy) antigen. Methods: Each recipient was transfused with HOD or KEL RBCs following either MZ B cell or CD4 T cell depletion using a cocktail of MZ B cell (anti-CD11a and anti-CD49d) or anti-CD4 depleting antibody, 4 and 2 days prior to transfusion. Control groups received isotype control injections in parallel. MZ B cell deficient (CD19cre/+ X Notch2flx/flx) and CD4 T cell deficient (MHC class II knockout) recipients were also used to examine the role of MZ B cells and CD4 T cells, respectively. Serum collected on days 5 and 14 post-transfusion was evaluated for anti-HOD or anti-KEL antibodies by incubating HOD or KEL RBCs with serum, followed by detection of bound antibodies using anti-IgM and anti-IgG and subsequent flow cytometric analysis. Evaluation of antibody engagement and overall survival of HOD or KEL RBCs was accomplished by labeling RBCs with the lipophilic dye, DiI, prior to transfusion, followed by examination for bound antibody and RBC clearance on days 5 and 14 post-transfusion by flow cytometry. Results: Similar to the ability of MZ B cell depletion to reduce anti-KEL antibody formation following KEL RBC exposure, depletion of MZ B cells significantly reduced anti-HOD IgM and IgG antibodies following HOD RBC transfusion. In contrast, injection of recipients with isotype control antibodies in parallel failed to prevent alloantibody formation following HOD or KEL RBC transfusion. Similar results were obtained following HOD or KEL RBC transfusion into recipients genetically deficient in MZ B cells. In contrast, although MZ B cells were required for HOD and KEL RBC-alloantibody formation, manipulation of CD4 T cells differentially impacted the ability of each antigen to induce alloantibodies. While transfusion of HOD or KEL RBCs resulted in robust IgM alloantibodies in the absence of CD4 T cells, depletion or genetic elimination of CD4 T cells significantly inhibited anti-HOD IgG antibody formation, while failing to impact IgG anti-KEL antibody formation. Consistent with this, while manipulation of CD4 T cells protected HOD RBCs from antibody deposition and subsequent RBC clearance, this same approach failed to similarly protect KEL RBCs following transfusion. In contrast, depletion of MZ B cells not only prevented detectable alloantibody production, but also completely protected HOD or KEL RBCs from antibody deposition and subsequent RBC clearance. Conclusion: These results suggest that while MZ B cells mediate a robust IgM antibody response following either KEL or HOD antigen exposure, MZ B cells appear to possess the capacity to orchestrate unique downstream IgG responses through CD4 T cell dependent and independent pathways contingent on target alloantigen. As a result, while manipulation of CD4 T cells may prevent alloantibody formation against some antigens, targeting this immune population inadequately prevents RBC alloantibody formation against all RBC antigens. As chronic transfusion therapy exposes recipients to a wide variety of alloantigens, these results suggest that MZ B cells may represent a central initiating node that governs RBC alloimmunization against a variety of RBC alloantigens, and may therefore serve as a useful target in preventing alloantibody formation in chronically transfused individuals. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2021 ◽  
Author(s):  
Patricia E Zerra ◽  
Seema R Patel ◽  
Ryan Philip Jajosky ◽  
Connie M Arthur ◽  
James W McCoy ◽  
...  

Red blood cell (RBC) transfusions can result in alloimmunization toward RBC alloantigens that can increase the probability of complications following subsequent transfusion. An improved understanding of the immune mechanisms that underlie RBC alloimmunization is critical if future strategies capable of preventing or even reducing this process are to be realized. Using the HOD (hen egg lysozyme and ovalbumin fused to human Duffy) model system, we aimed to identify initiating immune factors that may govern early anti-HOD alloantibody formation. Our findings demonstrate that HOD RBCs continuously localize to the marginal sinus following transfusion, where they co-localize with marginal zone (MZ) B cells. Depletion of MZ B cells inhibited IgM and IgG anti-HOD antibody formation, while CD4 T cell depletion only prevented IgG anti-HOD antibody development. HOD-specific CD4 T cells displayed similar proliferation and activation following transfusion of HOD RBCs into wild type or MZ B cell deficient recipients, suggesting that IgG formation is not dependent on MZ B cell-mediated CD4 T cell activation. Moreover, depletion of follicular B cells failed to substantially impact the anti-HOD antibody response and no increase in antigen specific germinal center B cells was detected following HOD RBC transfusion, suggesting that antibody formation is not dependent on the splenic follicle. Despite this, anti-HOD antibodies persisted for several months following HOD RBC transfusion. Overall, these data suggest MZ B cells can initiate and then contribute to RBC alloantibody formation, highlighting a unique immune pathway that can be engaged following RBC transfusion.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 693-693
Author(s):  
Krystalyn E Hudson ◽  
Jeanne Hendrickson ◽  
Chantel M Cadwell ◽  
Neal N Iwakoshi ◽  
James C. Zimring

Abstract Abstract 693 Introduction: Breakdown of humoral tolerance to red blood cell (RBC) antigens can result in autoimmune hemolytic anemia (AIHA), a severe and potentially fatal disease. The pathogenesis of AIHA is poorly understood. To investigate the baseline biology of tolerance to self-antigens expressed on RBCs, we utilized a murine transgenic mouse with RBC-specific expression of a model antigen consisting of a triple fusion protein of hen egg lysozyme (HEL), ovalbumin (Ova), and human blood group molecule Duffy; HEL-OVA-Duffy (HOD mouse). Methods: Wild-type C57BL/6 (B6) mice or HOD mice (on a B6 background) were immunized with HEL/CFA or OVA/CFA to test immune responses to antigens contained within HOD. Some animals were immunized with peptides as opposed to whole protein. Anti-HOD antibodies were quantified by indirect immunofluorescence using HOD RBCs as targets. Anti-HEL IgG was quantified by ELISA and anti-HEL secreting B cells were enumerated by ELISPOT. CD4+ T cell responses were assessed by tetramer staining and tetramer pull-down assays using I-Ab-OVA-329-337/326-334. T cell tolerance was specifically broken by adoptive transfer of OT-II CD4+ T cells into HOD mice (OT-II T cells recognize OVA323-339 presented by I-Ab). Effects of HOD antigen expression on B cell development were evaluated by crossing the HOD mouse with an anti-HEL BCR knockin mouse (SwHEL mouse) that is capable of normal class switching. Results: Immunization of B6 mice with OVA/CFA induced high titer antibodies reactive with HOD RBCs; in contrast, no anti-HOD was detected in HOD mice immunized with OVA/CFA. Similarly, no anti-HEL was detected in HOD mice immunized with HEL/CFA, whereas wild-type B6 mice had high anti-HEL titers (p<0.05). These data demonstrate overall humoral tolerance to the HOD antigen. Using pull-down assays, OVA-tetramer reactive T cells were detected in both B6 and HOD mice, with similar endogenous frequencies (mean numbers are 40 and 53 T cells, respectively; at least 6 mice analyzed), suggesting that central tolerance did not eliminate HOD reactive T cells. However, upon immunization with OVA peptide, B6 but not HOD mice had a detectable expansion of OVA-tetramer reactive CD4+ T cells, indicating that peripheral tolerance was preventing HOD autoreactive CD4+ T cells from participating in an immune response. To assess B cell tolerance to the HOD antigen, T cell tolerance was circumvented through adoptive transfer or OTII splenocytes (specific for the OVA323-339 peptide) into HOD mice. Anti-HEL autoantibodies were detected in HOD mice but not control B6 mice (p<0.001). Antibody production correlated with a 10–20 fold increase of anti-HEL antibody secreting cells, as determined by ELISPOT. Autoantibody production in HOD mice was not due to passenger B cells from the OTII donor, an artifact of excess CD4+ T cell number, or bystander activation as no autoantibodies were observed upon adoptive transfer with OTIIs on a Rag knockout background, irrelevant CD4+ T cells from SMARTA mice, or activated CD4+ T cells from TCR75 mice. To test the effects of HOD antigen expression on development of autoreactive B cells, HOD mice were crossed with SwHEL BCR transgenic mice (that express anti-HEL) and the F1 mice were analyzed. HEL-reactive B cells were visualized using multimeric HEL conjugated to allophycocyanin. In HOD-SwHEL+ mice, approximately 46±14% of immature bone marrow B cells were reactive with HEL, compared to 15±12% in HOD+SwHEL+ mice (p=0.043, 3 independent experiments, 5 mice total). Conclusions: These data demonstrate that tolerance to an RBC specific antigen is complete in the CD4+ T cell, but not the B cell compartment. CD4+ T cell tolerance appears to be more an effect of peripheral tolerance than central deletion, as OVA-tetramer reactive CD4+ T cells were visible in HOD mice but did not activate upon immunization with their cognate antigen. In contrast, while the HODxSwHEL F1 mice demonstrate that some B cell tolerance to HOD occurs, the induction of autoantibodies by introducing CD4+ autoreactive T cells (OT-II) demonstrates that B cell tolerance to the HOD antigen is incomplete in HOD mice. Together, these data suggest that a breakdown in T cell tolerance is all that is required for the pathogenesis of AIHA. As the T cell tolerance appears not to be deletional, it is predicted that environmental factors leading to a breakdown in peripheral tolerance of CD4+ T cells would be sufficient to induce AIHA. Disclosures: Zimring: Immucor Inc,: Research Funding.


2003 ◽  
Vol 198 (7) ◽  
pp. 1011-1021 ◽  
Author(s):  
Mark Y. Sangster ◽  
Janice M. Riberdy ◽  
Maricela Gonzalez ◽  
David J. Topham ◽  
Nicole Baumgarth ◽  
...  

Contact-mediated interactions between CD4+ T cells and B cells are considered crucial for T cell–dependent B cell responses. To investigate the ability of activated CD4+ T cells to drive in vivo B cell responses in the absence of key cognate T–B interactions, we constructed radiation bone marrow chimeras in which CD4+ T cells would be activated by wild-type (WT) dendritic cells, but would interact with B cells that lacked expression of either major histocompatibility complex class II (MHC II) or CD40. B cell responses were assessed after influenza virus infection of the respiratory tract, which elicits a vigorous, CD4+ T cell–dependent antibody response in WT mice. The influenza-specific antibody response was strongly reduced in MHC II knockout and CD40 knockout mice. MHC II–deficient and CD40-deficient B cells in the chimera environment also produced little virus-specific immunoglobulin (Ig)M and IgG, but generated a strong virus-specific IgA response with virus-neutralizing activity. The IgA response was entirely influenza specific, in contrast to the IgG2a response, which had a substantial nonvirus-specific component. Our study demonstrates a CD4+ T cell–dependent, antiviral IgA response that is generated in the absence of B cell signaling via MHC II or CD40, and is restricted exclusively to virus-specific B cells.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1554-1554
Author(s):  
Yongwei Zheng ◽  
Mei Yu ◽  
Anand Padmanabhan ◽  
Richard H. Aster ◽  
Renren Wen ◽  
...  

Abstract Heparin-induced thrombocytopenia (HIT) is an antibody-mediated disorder that can cause arterial or venous thrombosis/thromboembolism, and platelet factor 4 (PF4)/ heparin-reactive antibodies are essential to the pathogenesis of HIT. Our recent studies have demonstrated that marginal zone (MZ) B cells play a major role in production of PF4/heparin-specific antibodies. However, the role of T cells in production of these pathogenic antibodies is not clear. Here we showed that PF4/heparin complex-induced production of PF4/heparin-specific antibodies was markedly impaired in mice, in which CD4 T cells were depleted by administration of GK1.5 anti-CD4 monoclonal antibody. As expected, the CD4 T cell-depleted mice responded normally to T cell-independent antigen TNP-Ficoll but not T cell-dependent antigen NP-CGG, in agreement with the lack of CD4 T cells in these GK1.5-treated mice. Further, following adoptive transfer of a mixture of wild-type splenic B cells and splenocytes from B cell-deficient μMT mice, T and B cell-deficient Rag1 knockout mice responded to PF4/heparin complex challenge to produce PF4/heparin-specific antibodies. In contrast, Rag1-deficient mice that received a mixture of wild-type splenic B cells and splenocytes from Rag1-deficient mice barely produced PF4/heparin-specific antibodies upon PF4/heparin complex challenge. These data suggest that T cells are required for production of PF4/heparin-specific antibodies. Consistent with this concept, mice with B cells lacking CD40 molecule, a B cell costimulatory molecule that helps T cell-dependent B cell responses, displayed a marked reduction of PF4/heparin-specific antibody production following PF4/heparin complex challenge. Also as expected, mice with CD40-deficient B cells were able to respond to T cell-independent antigen TNP-Ficoll but not T cell-dependent antigen NP-CGG, consistent with the lack of T-cell help in these mice. Taken together, these findings demonstrate that T cells play an essential role in production of PF4/heparin-specific antibodies by MZ B cells. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Christine Harrer ◽  
Ferdinand Otto ◽  
Georg Pilz ◽  
Elisabeth Haschke-Becher ◽  
Eugen Trinka ◽  
...  

Abstract Background C-X-C chemokine ligand 13 (CXCL13) is frequently elevated in cerebrospinal fluid (CSF) in a variety of inflammatory central nervous system (CNS) diseases, has been detected in meningeal B cell aggregates in brain tissues of multiple sclerosis patients, and proposedly recruits B cells into the inflamed CNS. Besides B cells also follicular helper T (Tfh) cells express the cognate receptor C-X-C chemokine receptor type 5 (CXCR5) and follow CXCL13 gradients in lymphoid tissues. These highly specialized B cell helper T cells are indispensable for B cell responses to infection and vaccination and involved in autoimmune diseases. Phenotypically and functionally related circulating CXCR5+CD4 T cells occur in blood. Their co-recruitment to the inflamed CSF is feasible but unresolved. Methods We approached this question with a retrospective study including data of all patients between 2017 and 2019 of whom immune phenotyping data of CXCR5 expression and CSF CXCL13 concentrations were available. Discharge diagnoses and CSF laboratory parameters were retrieved from records. Patients were categorized as pyogenic/aseptic meningoencephalitis (ME, n = 29), neuroimmunological diseases (NIMM, n = 22), and non-inflammatory neurological diseases (NIND, n = 6). ANOVA models and Spearman’s Rank-Order correlation were used for group comparisons and associations of CXCL13 levels with immune phenotyping data. Results In fact, intrathecal CXCL13 elevations strongly correlated with CXCR5+CD4 T cell frequencies in the total cohort (p < 0.0001, r = 0.59), and ME (p = 0.003, r = 0.54) and NIMM (p = 0.043, r = 0.44) patients. Moreover, the ratio of CSF-to-peripheral blood (CSF/PB) frequencies of CXCR5+CD4 T cells strongly correlated with CXCL13 levels both in the total cohort (p = 0.001, r = 0.45) and ME subgroup (p = 0.005, r = 0.50), indicating selective accumulation. ME, NIMM and NIND groups differed with regard to CSF cell counts, albumin quotient, intrathecal IgG, CXCL13 elevations and CXCR5+CD4 T cells, which were higher in inflammatory subgroups. Conclusion The observed link between intrathecal CXCL13 elevations and CXCR5+CD4 T cell frequencies does not prove but suggests recruitment of possible professional B cell helpers to the inflamed CSF. This highlights CSF CXCR5+CD4 T cells a key target and potential missing link to the poorly understood phenomenon of intrathecal B cell and antibody responses with relevance for infection control, chronic inflammation and CNS autoimmunity.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 41-41 ◽  
Author(s):  
Sean R. Stowell ◽  
Kathryn R. Girard-Pierce ◽  
Connie M Arthur ◽  
Nicole H. Smith ◽  
James C. Zimring ◽  
...  

Abstract Background While red blood cells (RBCs) transfusion can provide life saving therapy, patients who require chronic transfusion therapy may develop RBC alloantibodies that limit the availability of compatible RBCs for future transfusion and increase the risk of hemolytic transfusion reactions. However, not all patients generate alloantibodies following RBC exposure. Among factors that potentially influence RBC alloantibody formation, several studies suggest that a recipient’s MHC class II repertoire may predict an individual’s likelihood of responding to a particular RBC alloantigen. However, whether MHC class II antigens are required for efficient alloantibody formation following RBC transfusion remains unknown. As a result, we examined the potential role of MHC class II in the development of RBC alloantibodies following transfusion in a murine model of KEL alloimmunization. Methods RBCs transgenically expressing the human KEL antigen specifically under a β-globin promoter (KEL RBCs) were transfused into C57BL/6, C57BL/6 MHC class II knock out (KO) or KEL transgenic control recipients. Following transfusion, blood was harvested on days 3, 5, 7, 14, 21 and 28 following transfusion and serum was analyzed for IgM or IgG anti-KEL antibodies by indirect immunofluorescence using flow cytometry with KEL and control C57BL/6 RBCs as targets. To deplete CD4 T cells, mice were injected with anti-CD4 (clone GK1.5) 4 and 2 days prior to transfusion. As a control, additional C57BL/6 recipients were similarly injected with an isotype control. C57BL/6 recipients were also injected in parallel with GK1.5 or isotype control followed by splenocyte examination for CD4 T cell depletion using anti-CD3 and an anti-CD4 clone that recognizes a different CD4 epitope than GK1.5 (clone RM4-5). All experiments were completed at least three times with 3–5 recipients per group per experiment. Results Transfusion of KEL RBCs resulted in significant IgM anti-KEL antibody formation that peaked approximately 5 days following transfusion in both C57BL/6 and C57BL/6 MHC class II KO recipients. Similarly, IgG anti-KEL antibodies could also be detected in C57BL/6 or C57BL/6 MHC class II KO as early as 7 days following transfusion and continued to rise to similar peak levels within 14 to 21 days following KEL RBC transfusion. Injection of GK1.5, but not isotype control antibody, depleted CD4 T cells to less than 1% of their original level. Transfusion of KEL RBCs into C57BL/6, CD4 depleted C57BL/6 or isotype control treated C57BL/6 resulted in similar levels of IgM anti-KEL antibody that peaked approximately 5 days following transfusion. Likewise, transfusion of KEL RBCs induced similar levels of IgG anti-KEL antibodies within 7 days following transfusion that also peaked between 14 and 21 days in C57BL/6, CD4 depleted C57BL/6 or isotype control treated C57BL/6 recipients. (All the above differences achieved a p value of <0.05) Conclusions Despite the potential role of CD4 T cells in facilitating RBC alloantibody formation, these results suggest that significant IgG RBC alloantibody can occur independent of MHC class II or CD 4 T cells. Although it remains possible that CD4 T cells become activated following RBC alloantigen exposure, the lack of CD4 T cell requirement in this model suggests that some patients may be capable of mounting a clinically significant immune response following RBC transfusion in the absence of CD4 T cell help. As a result, MHC antigen presentation of unique RBC alloantigens may not be necessary for RBC alloimmunization to occur. Disclosures: Zimring: Immucor Inc.: Research Funding; Terumo: Research Funding; Haemonetics: Consultancy; Cerus: Honoraria.


2004 ◽  
Vol 78 (13) ◽  
pp. 6827-6835 ◽  
Author(s):  
Rebecca L. Sparks-Thissen ◽  
Douglas C. Braaten ◽  
Scott Kreher ◽  
Samuel H. Speck ◽  
Herbert W. Virgin

ABSTRACT CD4 T cells are important for control of infection with murine gammaherpesvirus 68 (γHV68), but it is not known whether CD4 T cells function via provision of help to other lymphocyte subsets, such as B cells and CD8 T cells, or have an independent antiviral function. Moreover, under conditions of natural infection, the CD4 T-cell response is not sufficient to eliminate infection. To determine the functional capacities of CD4 T cells under optimal or near-optimal conditions and to determine whether CD4 T cells can control γHV68 infection in the absence of CD8 T cells or B cells, we studied the effect of ovalbumin (OVA)-specific CD4 T cells on infection with a recombinant γHV68 that expresses OVA. OVA-specific CD4 T cells limited acute γHV68 replication and prolonged the life of infected T-cell receptor-transgenic RAG (DO.11.10/RAG) mice, demonstrating CD4 T-cell antiviral activity, independent of CD8 T cells and B cells. Despite CD4 T-cell-mediated control of acute infection, latent infection was established in DO.11.10/RAG mice. However, OVA-specific CD4 T cells reduced the frequency of latently infected cells both early (16 days postinfection) and late (42 days postinfection) after infection of mice containing CD8 T cells and B cells (DO.11.10 mice). These results show that OVA-specific CD4 T cells have B-cell and CD8 T-cell-independent antiviral functions in the control of acute infection and can, in the absence of preexisting CD8 T-cell or B-cell immunity, inhibit the establishment of gammaherpesvirus latency.


Author(s):  
Njabulo Ngwenyama ◽  
Annet Kirabo ◽  
Mark Aronovitz ◽  
Francisco Velázquez ◽  
Francisco Carrillo-Salinas ◽  
...  

Background: Despite the well-established association between T cell-mediated inflammation and non-ischemic heart failure (HF), the specific mechanisms triggering T cell activation during the progression of HF and the antigens involved are poorly understood. We hypothesized that myocardial oxidative stress induces the formation of isolevuglandin (IsoLG)-modified proteins that function as cardiac neoantigens to elicit CD4+ T cell receptor (TCR) activation and promote HF. Methods: We used transverse aortic constriction (TAC) in mice to trigger myocardial oxidative stress and T cell infiltration. We profiled the TCR repertoire by mRNA sequencing of intramyocardial activated CD4+ T cells in Nur77 GFP reporter mice, which transiently express GFP upon TCR engagement. We assessed the role of antigen presentation and TCR specificity in the development of cardiac dysfunction using antigen presentation-deficient MhcII -/- mice, and TCR transgenic OTII mice that lack specificity for endogenous antigens. We detected IsoLG-protein adducts in failing human hearts. We also evaluated the role of reactive oxygen species (ROS) and IsoLGs in eliciting T cell immune responses in vivo by treating mice with the antioxidant TEMPOL, and the IsoLG scavenger 2-hydroxybenzylamine (2-HOBA) during TAC, and ex-vivo in mechanistic studies of CD4+ T cell proliferation in response to IsoLG-modified cardiac proteins. Results: We discovered that TCR antigen recognition increases in the left ventricle (LV) as cardiac dysfunction progresses, and identified a limited repertoire of activated CD4+ T cell clonotypes in the LV. Antigen presentation of endogenous antigens was required to develop cardiac dysfunction since MhcII -/- mice reconstituted with CD4+ T cells, and OTII mice immunized with their cognate antigen were protected from TAC-induced cardiac dysfunction despite the presence of LV-infiltrated CD4+ T cells. Scavenging IsoLGs with 2-HOBA reduced TCR activation and prevented cardiac dysfunction. Mechanistically, cardiac pressure overload resulted in ROS dependent dendritic cell accumulation of IsoLG-protein adducts which induced robust CD4+ T cell proliferation. Conclusions: Collectively, our study demonstrates an important role of ROS-induced formation of IsoLG-modified cardiac neoantigens that lead to TCR-dependent CD4+ T cell activation within the heart.


2016 ◽  
Vol 213 (11) ◽  
pp. 2413-2435 ◽  
Author(s):  
Yi Wang ◽  
Cindy S. Ma ◽  
Yun Ling ◽  
Aziz Bousfiha ◽  
Yildiz Camcioglu ◽  
...  

Combined immunodeficiency (CID) refers to inborn errors of human T cells that also affect B cells because of the T cell deficit or an additional B cell–intrinsic deficit. In this study, we report six patients from three unrelated families with biallelic loss-of-function mutations in RLTPR, the mouse orthologue of which is essential for CD28 signaling. The patients have cutaneous and pulmonary allergy, as well as a variety of bacterial and fungal infectious diseases, including invasive tuberculosis and mucocutaneous candidiasis. Proportions of circulating regulatory T cells and memory CD4+ T cells are reduced. Their CD4+ T cells do not respond to CD28 stimulation. Their CD4+ T cells exhibit a "Th2" cell bias ex vivo and when cultured in vitro, contrasting with the paucity of "Th1," "Th17," and T follicular helper cells. The patients also display few memory B cells and poor antibody responses. This B cell phenotype does not result solely from the T cell deficiency, as the patients’ B cells fail to activate NF-κB upon B cell receptor (BCR) stimulation. Human RLTPR deficiency is a CID affecting at least the CD28-responsive pathway in T cells and the BCR-responsive pathway in B cells.


2021 ◽  
Vol 118 (46) ◽  
pp. e2108157118
Author(s):  
Kerstin Narr ◽  
Yusuf I. Ertuna ◽  
Benedict Fallet ◽  
Karen Cornille ◽  
Mirela Dimitrova ◽  
...  

Chronic viral infections subvert protective B cell immunity. An early type I interferon (IFN-I)–driven bias to short-lived plasmablast differentiation leads to clonal deletion, so-called “decimation,” of antiviral memory B cells. Therefore, prophylactic countermeasures against decimation remain an unmet need. We show that vaccination-induced CD4 T cells prevented the decimation of naïve and memory B cells in chronically lymphocytic choriomeningitis virus (LCMV)-infected mice. Although these B cell responses were largely T independent when IFN-I was blocked, preexisting T help assured their sustainability under conditions of IFN-I–driven inflammation by instructing a germinal center B cell transcriptional program. Prevention of decimation depended on T cell–intrinsic Bcl6 and Tfh progeny formation. Antigen presentation by B cells, interactions with antigen-specific T helper cells, and costimulation by CD40 and ICOS were also required. Importantly, B cell–mediated virus control averted Th1-driven immunopathology in LCMV-challenged animals with preexisting CD4 T cell immunity. Our findings show that vaccination-induced Tfh cells represent a cornerstone of effective B cell immunity to chronic virus challenge, pointing the way toward more effective B cell–based vaccination against persistent viral diseases.


Sign in / Sign up

Export Citation Format

Share Document