HSP70-HSF1 Interplays Has a Role in the Pathogenesis of Chronic Lymphocytic Leukemia and Is a Druggable Target

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4368-4368
Author(s):  
Federica Frezzato ◽  
Flavia Raggi ◽  
Filippo Severin ◽  
Veronica Martini ◽  
Valentina Trimarco ◽  
...  

Abstract INTRODUCTION We recently found that the Heat Shock Protein of 70kDa (HSP70), an ATP-dependent chaperone that is induced by cellular stress and protects cells against various apoptotic stimuli, was particularly overexpressed in neoplastic B cells from Chronic Lymphocytic Leukemia (CLL) vs normal B lymphocytes. HSP70 responds to a wide variety of physiological and environmental stress signals, thus allowing cells to survive to lethal conditions. The primary responsible for the transcription of HSP70 is the heat shock factor 1 (HSF1), being the major regulator of HSP70 expression. In response to stress, HSF1 becomes phosphorylated, forms homotrimers, binds DNA and activates heat shock gene transcription. Considering that the search for molecules involved in the apoptosis resistance and increased survival of B cells from CLL is still ongoing, with this as a background, we were aimed at studying and targeting HSP70 or players related to it (i.e. HSF1) in view of their clinical, prognostic and therapeutical relevance in CLL. METHODS HSP70/HSF1 axis was analysed in freshly isolated leukemic B cells from CLL patients. Expression levels of HSP70, HSF1 and HSF1-Ser326 were assessed by Western blotting analysis with specific antibodies and the obtained expression data have been correlated with clinical features of the patients. HSP70 subcellular localization has been determined by confocal microscopy and cell fractionation. HSP70 expression and localization was also assessed by immunohistochemistry in lymph nodes from CLL patients. Leukemic B cells from 15 CLL therapy-free patients were treated with different concentrations of: i) Zafirlukast, an oral leukotriene receptor antagonist used to prevent asthma symptoms and acting also as HSP70 inhibitor and ii) Fisetin, a dietary flavonoid acting as anti-inflammatory and anti-carcinogen, that inhibits HSF1 activity through the block of its binding to the HSP70 promoter. Apoptosis induction in CLL cells was evaluated by Annexin V/Propidium Iodide flow cytometry test and by the presence of cleaved PARP observed in Western blotting. RESULTS We found that HSP70 and HSF1 proteins were overexpressed in leukemic vs normal B cells and correlated to poor prognosis. In particular, IGHV unmutated or ZAP70 positive patients presented higher levels of HSP70 and HSF1 with respect to patients with a favorable prognosis. Moreover, the two proteins presented a positive correlation (p<0.0001, r=0.84; Pearson's correlation) thus hypothesizing a positive loop feedback for their expression. We found that, in CLL, HSF1 was constitutively phosphorylated at activatory Ser326, thus being positively regulated, in a large part of our patients. In addition, patients presenting a higher phosphorylation of HSF1 at Ser326 were mostly ZAP70 positive patients. We also observed an abnormal constitutive nuclear localization of HSP70 in leukemic cells. On the basis of these results and the pro-survival role played by HSP70 and HSF1, we analyzed the effects of their inhibition in leukemic cells of our patients by using two inhibitors of this axis, Zafirlukast and Fisetin. Both inhibitors have been proven to be effective in inducing a dose-dependent cell apoptosis in CLL B cells. CONCLUSIONS HSP70 overexpression is involved in a diminished response to treatment by promoting the adaptation of tumor cells to changes (i.e. toxic conditions) currently induced by chemotherapy thus revealing critical roles for HSP70 in cancer initiation and progression. It has been shown that HSP70 depletion results in an increased sensitivity to chemotherapy. For this reason, and considering its prognostic implications and functional role in cancers, including CLL, HSP70 represents an interesting target for antileukemic therapies. In this context, our results suggest: i) an involvement of HSP70/HSF1 axis in the pathogenesis of CLL; ii) an input for further studies that consider the possible involvement of ZAP70 in HSP70/HSF1 axis in CLL; iii) the putative usage of Zafirlukast, which is a drug already available for clinical use and in the targeting of HSF1 in CLL. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2809-2809
Author(s):  
Livio Trentin ◽  
Antonella Contri ◽  
Anna Maria Brunati ◽  
Federica Frezzato ◽  
Martina Frasson ◽  
...  

Abstract B-cell chronic lymphocytic leukemia (B-CLL) is the most common leukemia in adults and is characterized by the accumulation of clonal CD5+ B lymphocytes. Several protein kinase pathways have been claimed to be involved in the regulation of apoptosis and cell survival. We previously demonstrated that Src kinase Lyn is overexpressed at the protein level in leukemic cells as compared to normal B lymphocytes with substantial amount of the kinase anomalously present in the cytosol. Moreover, most of Lyn is constitutively active in resting leukemic cells and is poorly responsive to BCR engagement. The finding that B CLL cells contained cytosolic Lyn fraction and are defective in programmed cell death suggest that the tyrosine phosphorlation of specific cytosolic targets might account, at least in part, for cell resistance to apoptosis. The 75 KDa HS1 protein is one of the major substrate of Lyn kinase upon BCR cross-linking that plays a crucial role in BCR- induced apoptosis in the mouse B lymphoma cell line WEHI-231. A recent study demonstrates that most HS1 protein was constitutively phosphorylated in B CLL patients with poor prognosis whereas only a fraction was phosphorylated in patients with good prognoses. In the present study, the relative HS1 protein levels were measured by Western blot analysis in 50 CLL patients belonging to different clinical stages. The relative HS1 protein levels were compared with corresponding levels in normal peripheral blood and with Jurkat cells. For normal B cells, the mean ± SD for HS1: actin ratio was 0,88 ± 0,10. There was considerable variation in the levels of HS1/actin ratio in CLL cells, which ranged from 0,49 to 2,50. Thus, compared to normal B cells, 15 CLL patients had a HS1 level which fell within the mean ± 1SD HS1 levels for normal B cells, while 9 patients had lower levels and 26 patients had higher levels. When assessed by flow cytometry, HS1 expression was normally distributed among CLL cells in individual patients and the mean levels correlated with those obtained by Western blotting. A difference in the levels of HS1 was also observed between mutated and unmutated patients. Using confocal microscopy and subcellular cell fractionation, we observed that HS1 protein was abnormally distributed in malignant cells as compare with normal B cells: a 4–7% aliquot of HS1 was anomalously present in the nucleus of leukemic cells. When primary CLL cells were in vitro treated whith dexamethazone, cyclosporin A, chlorambucil, or fludarabine the HS1 levels decreased correlating with the sensitivity of these cells to undergo apoptosis. Using a polyclonal antiserum against HS1 a major cleavage product of the apparent molecular weight of 64 KDa and one minor product of approximately 46 Kda was detected in B CLL cells cultured for 24 hours whith drugs. These findings suggest that HS1 plays a pivotal role in the regulation of cell survival of leukemic B cells and suggest that HS1 might represent a target for the development of new drugs to be used in vivo in these patients.


Blood ◽  
2002 ◽  
Vol 100 (8) ◽  
pp. 2973-2979 ◽  
Author(s):  
Anne J. Novak ◽  
Richard J. Bram ◽  
Neil E. Kay ◽  
Diane F. Jelinek

B-cell chronic lymphocytic leukemia (B-CLL) is defined by the accumulation of CD5+ B cells in the periphery and bone marrow. This disease is not characterized by highly proliferative cells but rather by the presence of leukemic cells with significant resistance to apoptosis and, therefore, prolonged survival. B-lymphocyte stimulator (BLyS) is a newly identified tumor necrosis factor (TNF) family member shown to be critical for maintenance of normal B-cell development and homeostasis and it shares significant homology with another TNF superfamily member, APRIL. The striking effects of BLyS on normal B-cell maintenance and survival raises the possibility that it may be involved in pathogenesis and maintenance of hematologic malignancies, including B-CLL. In this study, we investigated the status of APRIL and BLyS expression, as well as their receptors, in this disease. All B-CLL patient cells studied expressed one or more of 3 known receptors for BLyS; however, the pattern of expression was variable. In addition, we demonstrate for the first time that B-CLL cells from a subset of patients aberrantly express BLyS and APRIL mRNA, whereas these molecules were not detectable in normal B cells. Furthermore, we provide in vitro evidence that BLyS protects B-CLL cells from apoptosis and enhances cell survival. Because these molecules are key regulators of B-cell homeostasis and tumor progression, leukemic cell autocrine expression of BLyS and APRIL may be playing an important role in the pathogenesis of this disease.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 19-19
Author(s):  
Claudio Giacinto Atene ◽  
Rossana Maffei ◽  
Stefania Fiorcari ◽  
Silvia Martinelli ◽  
Patrizia Zucchini ◽  
...  

Introduction: Chronic lymphocytic leukemia (CLL) is a dynamic disease in which monoclonal B cells proliferate within the pseudo-follicular centers in lymphoid organs and then they accumulate due to an intrinsic defect of apoptosis. Leukemic cells are considered as "addicted to the host" since extrinsic signals from the microenvironment strongly influence the establishment of a progressive immunosuppression for malignant cell growth and survival. The cytoplasmic enzyme indoleamine 2,3-dioxygenase (IDO) mediates the conversion of the essential amino acid tryptophan (Trp) into metabolic byproducts such as kynurenine (Kyn). Kyn and other secondary metabolites are endogenous activators of the aryl hydrocarbon receptor (AHR), a ligand-controlled transcription factor that mediates cellular responses to toxins or endogenous ligands. The IDO-Kyn-AHR axis plays important roles in carcinogenesis and cancer progression. The mechanisms that promote inflammation around tumor tissues and determine immune tolerance consist in Trp depletion, which induces T cell apoptosis, and in Kyn-mediated AHR activation that inhibits effector T cells and promotes regulatory T cells differentiation. IDO protein is expressed in human hematologic malignancies and its level is correlated with a poor prognosis and chemoresistance. The IDO activity, measured as the Kyn/Trp ratio, was reported to be increased in CLL cases comparing to normal controls. Aim: We wondered to characterize the expression of IDO and AHR in CLL patients and to dissect the biological function of the IDO-Kyn-AHR axis. Methods: Gene transcription and protein expression were evaluated by real time PCR and western blot. Enzymatic activity was assessed through ELISA. Survival was measured with PI/annexin V assay. Overexpression and silencing of target genes was obtained by nucleofection. Results: Firstly, we observed that CLL cells expressed both IDO and AHR at variable levels. Moreover, we found that several microenvironmental signals such as IFNγ, LPS, anti-IgM, CpG oligo DNA, CD40L and TNFα were able to up-regulate IDO and AHR mRNA and protein. To characterize the pathways able to mediate IDO expression, we stimulated CLL cells with IFNγ and CD40L. Using ruxolitinib, an inhibitor of JAK-STAT pathway, we found that IFNγ induced IDO through STAT1 signaling. Again, CD40L stimulation determined IDO overexpression through the non-canonical NF-kB pathway, as assessed by treating cells with NF-κB inducing kinase inhibitor, NIK SMI1. We also confirmed that IFNγ-treated CLL cells were able to produce a functional IDO enzyme by measuring Kyn production and Trp consumption by ELISA. The strong increase in the Kyn/Trp ratio induced by IFNγ was significantly reduced by ruxolitinib treatment. To verify if Kyn produced by CLL cells could act through an autocrine loop on AHR, leukemic cells were treated with Kyn. We observed that Kyn mediated AHR translocation from the cytoplasm to the nuclei, inducing its activation as assessed by up-regulation of CYP1A1, a known AHR target gene. Of interest, we found that Kyn treatment improved CLL cells survival. Analyzing the anti-apoptotic proteins of the Bcl2 family after Kyn treatment, we found the induction of Mcl1, that was affected by adding CH-223191, an antagonist of AHR. Moreover, we transfected CLL cells with an IDO vector. The up-regulation of IDO increased CLL cells survival through the induction of Mcl1. Accordingly, when CLL cells were silenced for AHR, we observed a reduction of their survival. Conclusion: Our data demonstrate the constitutive expression of IDO and AHR in CLL cells. Furthermore, the tumor microenvironment promotes the induction of IDO and AHR through a complex signaling crosstalk with leukemic cells. Our findings underline that IDO-Kyn-AHR axis is active in CLL cells and promotes Mcl1 expression, sustaining the survival of CLL cells. Disclosures Luppi: Gilead Sci: Consultancy, Speakers Bureau; MSD: Consultancy; Sanofi: Consultancy; Abbvie: Consultancy; Daiichi-Sankyo: Consultancy; Novartis: Consultancy, Speakers Bureau. Marasca:Gilead Sci: Honoraria, Research Funding; Roche: Consultancy, Honoraria; Shire: Consultancy, Honoraria; Janssen: Honoraria, Research Funding; Abbvie: Consultancy, Honoraria.


Blood ◽  
1982 ◽  
Vol 59 (3) ◽  
pp. 555-562
Author(s):  
MA Simmonds ◽  
G Sobczak ◽  
SP Hauptman

Human peripheral blood lymphocytes can be phenotypically identified by the presence of one or both of two proteins, 225,000-dalton macromolecular insoluble cold globulin (225-MICG) and 185,000-dalton MICG (185-MICG). T cells synthesize and insert into their plasma membrane 225-MICG, null cells 185-MICG, and B cells both 225 and 185- MICG. In contrast, the monoclonal B cells of chronic lymphocytic leukemia are characterized by the presence of 225-MICG and the absence of 185-MICG. We have recently found it possible to chemically deplete 185-MICG from viable normal B cells by treating them with diisopropylfluorophosphate (DFP), thus making normal B cells phenotypically resemble leukemic cells. In the present report we determined whether certain peculiar properties of these leukemic cells would be associated with the normal B cells chemically depleted of 185- MICG. In normal B cells, SIg diffuses in the lipid bilayer to form clusters and caps under appropriate conditions, while in chronic lymphocytic leukemia (CLL) cells this does not occur. Normal B cells depleted of 185-MICG fail to undergo capping of SIg or surface MICG under appropriate conditions. Both DFP-treated B cells and CLL cells tend to rupture when smeared on a glass slide. Both CLL cells and DFP- treated B cells fail to secrete 225-MICG after it has been synthesized intracellularly. The relationship of these findings to the mechanisms of secretion and capping are discussed.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2821-2821
Author(s):  
Julien Defoiche ◽  
Christophe Debacq ◽  
Becca Asquith ◽  
Yan Zhang ◽  
Arsène Burny ◽  
...  

Abstract Whether chronic lymphocytic leukemia (CLL) represents latent or proliferating disease has been intensively debated. Whilst the dogma that CLL results from accumulation of dormant lymphocytes is supported by the unresponsiveness of leukemic cells to antigens and polyclonal activators, recent in vivo kinetic measurements show that B-lymphocytes do divide at significant rates in CLL. However, B cell kinetics were not compared between CLL patients and healthy controls so it was not possible to ascertain to what extent lymphocyte kinetics were aberrant in CLL. We compared proliferation rates of B- and T-lymphocytes in CLL patients and healthy controls, using a pulse-chase approach based on incorporation of deuterium from 6,6-2H2-glucose into DNA. We found dramatically reduced in vivo rates of CD3−CD19+ cell proliferation in CLL compared with controls (mean 0.47 versus 1.66 %/day respectively, P=0.001), equivalent to an extended half-life of circulating B-cells (147 days versus 42 days). Labeled (dividing) CD3−CD19+ cells had death rates similar to the healthy controls (2.29 versus 3.55 %/day, P=0.495). Despite such aberrant B-cells kinetics, T-cell proliferation was unaffected by CLL (1.77 versus 1.40 %/day, P=0.488). We conclude that, B-cell proliferation rates are reduced in leukemic patients compared to healthy subjects and that most circulating CD3−CD19+ cells are quiescent, long-lived cells.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5023-5023
Author(s):  
Y. Lynn Wang ◽  
Zibo Song ◽  
Pin Lu ◽  
John P. Leonard ◽  
Morton Coleman ◽  
...  

Abstract B cell receptor (BCR) signaling plays an essential role in the pathogenesis of chronic lymphocytic leukemia. In a subset of patients with a poor clinical outcome, BCR ligation leads to increased cell metabolism and cell survival (Cancer Research66, 7158–66, 2006). Based on these findings, we tested whether targeting BCR signaling with dasatinib, an inhibitor of Src kinase, would interfere with the signaling cascade and cause death of CLL B cells. CLL leukemic cells were isolated from 34 patients and were incubated with or without dasatinib at a low dose of 128 nM. Among 34 cases, viability of leukemic cells was reduced by 2% to 90%, with an average of ~50% reduction on day 4 of ex vivo culture. Further study showed that CLL B cells undergo death by apoptosis via the intrinsic pathway which involves the generation of reactive oxygen species. Analysis of the Src family kinases showed that phosphorylation of Src, Lyn and Hck was inhibited by dasatinib not only in those cases that responded to dasatinib with apoptosis, but also in those that did not respond well (&lt;20% apoptosis). Further analysis revealed that suppressed activity of two downstream molecules, Syk and PLC Statistical analysis showed a significant correlation between CLL dasatinib response and their IgVH mutation and ZAP70 status. Cases with worse prognoses by these criteria have a better response to the kinase inhibitor. Lastly, we have also found that ZAP70 positive cases showed a greater degree of PLC


Blood ◽  
1993 ◽  
Vol 81 (8) ◽  
pp. 2076-2084 ◽  
Author(s):  
D Aderka ◽  
Y Maor ◽  
D Novick ◽  
H Engelmann ◽  
Y Kahn ◽  
...  

Tumor necrosis factor (TNF-alpha) acts as a growth stimulatory factor on leukemic B lymphocytes from many patients with chronic lymphocytic leukemia (CLL). Because TNF induces production of interleukin-6 (IL-6), which has been shown to be a growth factor for myeloma and other transformed B cells, we examined the possibility that IL-6 mediates the growth-stimulatory effect of TNF on B-CLL cells. In fact, we found that IL-6 is an inhibitor of B-CLL growth. The addition of recombinant human IL-6 markedly decreased the TNF-induced B-CLL growth, and this decrease was even greater when soluble IL-6 receptor, known to act as IL-6 agonist, was added with recombinant IL-6. Conversely, neutralizing monoclonal antibodies to IL-6 and to the IL-6 receptor potentiated the growth stimulation of TNF on B-CLL cells, in line with the possibility that IL-6 functions as a negative feedback regulator of an autocrine TNF action on these B-leukemic cells. Evidence is presented that production of IL-6 by monocytes and B cells of CLL patients is low, suggesting that administration of IL-6 may be beneficial in CLL to reduce the eventual growth stimulation by TNF and, possibly, also the deficiency in platelets and Ig production in this disease.


Author(s):  
Wafaa Ahmed El- Neanaey ◽  
Rania Shafik Swelem ◽  
Omar Mohamed Ghallab ◽  
Sara Mohamed Abu-Shelou

Background: The present work aimed to investigate the expression of CD160/ CD200 in CLL and other mature B-cell neoplasms (MBN) and their use as an additional diagnostic tool for differentiating CLL from other MBN. Materials and Methods: Using flow cytometry, we detected the expression of CD160 &CD200 on B-cells from 30 CLL patients, 30 other MBN patients in addition to 20 controls. CDs160/200 measurements were determined as a percentage expression (≥20% was considered positive) and as a ratio of the mean fluorescence intensities (MFIR) of leukemic cells/controls and were considered positive when the ratios were ≥2 and 20, respectively. Results: 90% and 100% of the CLL group expressed CDs160/200 in comparison to 60% and 63.3% of other MBN (p=0.007, p<0.001), respectively. By MFIR, 96.7% and 50% of our CLL group expressed CDs160/200 in comparison to 76.7% and 30% of other MBN, respectively. CDs160/ 200 were not expressed on the controls. Positive co-expression of CD160 and CD200 was found in 90% of the CLL cases, 60% of HCL patients and only in 40% of B-NHL. However, double negative expression of both markers was found only in 24% of the B-NHL patients. Conclusion: CD160 with CD200 can be used as additional diagnostic markers to the available routine panel to differentiate between B-CLL and other non-specified B-NHL patients.


Blood ◽  
2003 ◽  
Vol 102 (9) ◽  
pp. 3333-3339 ◽  
Author(s):  
Emilia Albesiano ◽  
Bradley T. Messmer ◽  
Rajendra N. Damle ◽  
Steven L. Allen ◽  
Kanti R. Rai ◽  
...  

AbstractThe degree of somatic mutation of immunoglobulin variable (Ig V) region genes is an important prognostic indicator of clinical course and outcome in B-cell chronic lymphocytic leukemia (B-CLL), although the reason for this association remains unclear. Furthermore, some B-CLL cells continue to acquire Ig V gene mutations after the transforming event. Because activation-induced cytidine deaminase (AID) is an essential component of the canonical somatic hypermutation process in healthy B cells, its expression in B-CLL is potentially relevant to the disease. We detected full-length AID transcripts and 3 splice variants by conventional reverse transcription polymerase chain reaction (RT-PCR) in approximately 40% of the cases examined. More sensitive real-time quantitative PCR detected AID transcripts in virtually all B-CLL samples tested, although the range of transcript levels was very large between different cases and varied within individual cases over time. Limiting dilution assays revealed that AID expression was restricted to a small fraction of the leukemic cells in the blood. However, this small fraction is not unique in its ability to express AID, because in vitro stimulation of B-CLL cells with appropriate stimuli significantly increased the fraction of AID-expressing cells. These data suggest that AID-mediated DNA alterations may occur in a variably sized, minor subset of B-CLL cells at any given time.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 5533-5533
Author(s):  
Flavia Raggi ◽  
Federica Frezzato ◽  
Veronica Martini ◽  
Filippo Severin ◽  
Valentina Trimarco ◽  
...  

Abstract INTRODUCTION The Heat Shock Protein of 70kDa (HSP70) and its transcription factor, the Heat Shock Factor 1 (HSF1), are two cytoprotective molecules that we found overexpressed and correlated to poor prognosis in Chronic Lymphocytic Leukemia (CLL) B cells. We focused on RAS-signalling pathways, which involve proteins known to regulate HSF1 activity, such as RAS/RAF/MEK/ERK and RAS/PI3K/AKT. Taking advantage from a previous RPPA analysis (Frezzato et al., 2016), we already developed a model according to which patients with high HSP70 protein levels are characterized by the activation of RAS/PI3K/AKT pathway, while patients with low levels of HSP70 have the RAS/RAF/MEK/ERK pathway activated. The dissection of these aberrant pathways in CLL would help in providing new information on the pathobiology of CLL B cells, in order to define innovative prognostic factors and/or new therapeutic targets. METHODS Freshly isolated leukemic B cells from 20 therapy-free CLL patients were cultured in RPMI 1640 supplemented with antibiotics and 2% FBS and treated with: 10, 20 and 30µM Pterostilbene, a natural analogue of Resveratrol, which upregulates ERK and downmodulates AKT with the final effect of inhibiting HSF1 activity. Apoptosis was evaluated after 24 hours by Annexin V/Propidium iodide flow cytometry test and by the presence of cleaved PARP in Western blotting (WB). HSP70 and HSF1 expression levels were evaluated by WB analysis in leukemic B cells after in vitro and in vivo inhibition with anti-PI3K. RESULTS We previously found that molecules acting as Resveratrol on RAS signaling pathways (inhibiting HSF1 by upregulating ERK and downmodulating AKT), induce apoptosis of CLL B cells in a dose-dependent manner. Particularly, we already observed apoptosis after treatment with Triacetyl Resveratrol and Honokiol. We recently extended our preliminary data on Pterostilbene to a large cohort of patients, obtaining the following results starting from 10µM to 20µM and 30µM: 63.50 ± 14.47%, 48.50 ± 21.59% and 24.88 ± 22.03% of living cells vs untreated cells, 74.63 ± 11.77% respectively, with p value p<0.05%, p<0.05, and p<0.01; paired Student's t Test. To determine the robustness of our model, we analysed the effect of Idelalisib, a PI3K inhibitor, on HSP70 and HSF1 protein levels. As expected, referring to our model, the inhibition of RAS/PI3K/AKT pathway, led to the down-modulation of HSF1 and HSP70 protein levels. We further investigated the effect of PI3K inhibition by collecting sample of 2 CLL patients before, during and after anti-PI3K regimen. We found out that HSP70 and HSF1 protein levels, analysed by WB, decreased in both patients and this decrease positively correlated with the response to therapy. CONCLUSIONS Our preliminary data suggest a pivotal role for HSP70 and HSF1 in CLL B cell protection against apoptosis. The dissection of RAS pathways in CLL and, in particular, the studies on their effect on the regulation of HSF1/HSP70 axis, are essential to understand the mechanisms that sustain the leukemic clone survival. The alternative and innovative approach we are developing to downmodulate HSP70 by targeting upstream-signalling molecules, will reduce the unpredictable off-target effects caused by the direct inhibition of the ubiquitous HSP70 protein and may contribute to find innovative targets for new therapeutic strategies for CLL. Disclosures Visentin: janssen: Consultancy, Honoraria. Trentin:Abbvie: Honoraria; Janssen: Research Funding; Gilead: Research Funding; Roche: Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document