scholarly journals Shift to Anti-Fibrinolysis on the Administration of L-Asparaginase (L-Asp) during Induction Therapy for Pediatric Acute Lymphoblastic Leukemia (ALL)

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5156-5156
Author(s):  
Takashi Ishihara ◽  
Keiji Nogami ◽  
Tomoko Matsumoto ◽  
Yasufumi Takeshita ◽  
Akitaka Nomura ◽  
...  

Abstract Introduction: Thromboembolism is a serious complication associated with ALL. The use of central venous catheter and treatment protocols involving corticosteroids and L-Asp is assumed as important thrombogenic factors at the induction phase. In particular, L-Asp has profound effects on hepatic synthesis of pro-, anti-coagulant and fibrinolytic factors. In this study, we hypothesized that change of coagulation and fibrinolytic function contributes to hyper-coagulation condition during the induction phase with L-Asp. In order to clarify this, we evaluated the dynamic change in coagulation and fibrinolysis by simultaneous measurement of both thrombin and plasmin generation assay (T/P-GA). Patients: Twenty-seven pediatric patients with newly diagnosed ALL were enrolled from Aug. 2014 to Oct. 2015 at 3 hospitals in Japan. All cases had no thrombotic predisposition. Eighteen cases (66.7%) (BCP-ALL; n=17, T-ALL; n=1) received Berlin-Frankfürt-Münster (BFM)-95 oriented induction therapy included prednisolone (and dexamethasone for T-ALL), vincristine, daunorubicin, and E.coli L-Asp (a total of 8 doses of 5,000 U/m2). The others (BCP-ALL; n=8, T-ALL; n=1) received Japan Association of childhood Leukemia Study (JACLS) ALL02 oriented induction therapy included prednisolone, dexamethasone, vincristine, daunorubicin, cyclophosphamide and E.coli L-Asp (a total of 6 doses of 6,000 U/m2). Methods: The individual hemostatic parameters were monitored by fibrinogen (Fbg), FDP, AT, TAT and PIC. Additionally, the global functions of coagulation and fibrinolysis were evaluated using T/P-GA established by our group [Matsumoto et al. TH 2013]. This assay was initiated by the addition of a mixture of optimized concentrations of tissue factor and tissue-type plasminogen activator. Thrombin and plasmin generation were monitored simultaneously using individual fluorescent substrates in separate microtiter wells. Standard curves were set using purified alpha-thrombin and plasmin. Patients' plasmas were collected at the following points, T0; pre-phase of L-Asp, T1; intermittent phase of L-Asp, T2; post-phase of L-Asp, and T3; post-induction phase. Endogenous potentials of thrombin generation (T-EP) for coagulant activity and plasmin peak levels (P-Peak) of plasmin generation for fibrinolytic activity were selected as parameters for evaluation in this study. A ratio of T-EP and P-Peak of patients' plasmas to those of control normal plasma were calculated. Results: All cases obtained first remission, and none of them developed coagulopathy. Six cases received FFP transfusion for low Fbg level, whilst 21 cases received AT supplement for low AT level. Fbg showed a median of 170, 99.0, 99.0 and 328 mg/dl at T0, T1, T2 and T3, respectively, whilst the other individual parameters showed relatively unchanged. T-EP revealed a median of 1,126, 1,059, 1,175, 1,343 and 1,132 nM, whilst P-Peak showed a median of 6.67, 4.54, 4.12, 5.50 and 5.77 nM for T0, T1, T2, T3 and control plasma, respectively, indicating the elevated T-EP ratios and reduced P-Peak ratios (Fig. 1). The most significant difference in both ratios demonstrated a median of 1.5-fold (range, 1.0 to 2.6) at T2, consistent with the lowest Fbg levels. The FFP transfusion group showed significantly lower T-EP ratios than non-transfusion group at T1 (a median of 0.87 vs. 1.01, P=0.041) and T2 (a median of 0.96 vs. 1.07, P=0.009), whilst P-Peak ratios revealed no significant changes. The AT supplement group showed no significant changes of both ratios. Conclusion: The results from decreased Fbg and unchanged FDP might reveal the hepatic synthesis disorder of Fbg, whilst the results from T/P-GA showed that their hemostatic dynamics appear likely to be thrombotic tendency, since their coagulation state was hyper-coagulation and anti-fibrinolysis at post-phase of L-Asp. These results suggest that the impaired balance of coagulation and fibrinolysis due to L-Asp therapy might play an important role of a thrombotic complication at induction phase. On the other hand both conventional FFP transfusion and AT supplement therapy might not dramatically repair this unbalance state. A further research would be required to examine the role of coagulant and fibrinolytic function using T/P-GA in the pathogenesis of coagulopathy associated with L-Asp therapy in order to establish the optimal supportive therapy. Figure 1 The Changes of Both T-EP and P-Peak Ratios Figure 1. The Changes of Both T-EP and P-Peak Ratios Disclosures Nogami: F. Hoffmann-La Roche Ltd.: Honoraria, Membership on an entity's Board of Directors or advisory committees; Sysmex Corporation: Patents & Royalties, Research Funding; Chugai Pharmaceutical Co., Ltd.: Honoraria, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding. Matsumoto:Sysmex Corporation: Patents & Royalties, Research Funding; Chugai Pharmaceutical Co., Ltd.: Patents & Royalties, Research Funding. Shima:Chugai Pharmaceutical Co., Ltd.: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding; F. Hoffmann-La Roche Ltd.: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Sysmex Corporation: Patents & Royalties, Research Funding.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3282-3282 ◽  
Author(s):  
Jonathan L Kaufman ◽  
Nisha Joseph ◽  
Vikas A. Gupta ◽  
Charise Gleason ◽  
Craig C Hofmeister ◽  
...  

Abstract Background: In the cytogenetic risk-stratification of myeloma, identification of t(11;14) on plasma cells has long been regarded as a standard risk prognostic factor. More recently, there have been reports of inferior PFS and OS relative to the standard risk myeloma patients. These results carry significance in the current day, as an ongoing phase I trial of Bcl-2 inhibitor (venetoclax) reported an ORR of 40% among myeloma patients with t(11;14) leading way for individualized therapeutic approach for myeloma. In this context, we evaluated the clinical outcomes of t(11;14) myeloma patients receiving uniform modern day induction therapies to evaluate the prognostic implication of this translocation. Methods: Of the 1000 consecutive newly diagnosed myeloma patients treated with RVD induction therapy per Richardson et al (Blood 2010) from July 2005 until August 2016, we have FISH probes for t(11;14) tested in 867 patients. Among these patients, we identified 122 patients with t(11;14). Excluding 247 patients that had del 17p, t(4;14), t (14;16) and complex karyotype on metaphase cytogenetics, we have identified 527 patients that formed the control group of standard risk myeloma. Demographic and outcomes data for the patients were collected from our IRB approved myeloma database and responses were evaluated per IMWG Uniform Response Criteria. Results: Median age of the patients is 61 years (range 16-83). 32% of the patients are above the age of 66. Other patient characteristics include: M/F 56%/44%; W/AA 62%/36%; ISS I/II/III 48%/30%/22%; Isotype IgG/IgA/FLC 60%/18%/19%. Response rates are summarized in table 1. Post induction responses ≥VGPR are lower for t(11;14) compared with non-t(11;14): 49.5% vs 76.3% p<0.001 and similarly best VGPR for t(11;14) vs non-t(11;14): 76.3% vs 91.4% p=0.001. The median progression-free survival for the t(11;14) and non-t(11;14) groups were 51 months (95% confidence interval (CI), 30.628-71.372) and 75 months (95% CI, 57.882-92.118) months, respectively (P<0.001), at a median follow up of 39 months. This difference is more pronounced among patients not receiving maintenance therapy (29 vs 62 months, p=0.001). The median overall survival (OS) for t(11;14), and non-(11;14) groups were not reached at a median follow up of 38 months. Conclusions: Even with the use of modern day induction regimens, patients with t(11;14) have inferior outcomes compared to the other patients standard risk myeloma. The lower rates of ≥VGPR post-induction and the shorter median PFS suggests more novel regimens such as venetoclax should be studied earlier in the course to improve the outcomes of t(11;14) patients on par with the other standard risk myeloma patients. Disclosures Kaufman: Janssen: Consultancy; Abbvie: Consultancy; Karyopharm: Other: data monitoring committee; Roche: Consultancy; BMS: Consultancy. Hofmeister:Adaptive biotechnologies: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Research Funding; Oncopeptides: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees. Heffner:ADC Therapeutics: Research Funding; Pharmacyclics: Research Funding; Kite Pharma: Research Funding; Genentech: Research Funding. Lonial:Amgen: Research Funding. Boise:AstraZeneca: Honoraria; Abbvie: Consultancy. Nooka:GSK: Consultancy, Membership on an entity's Board of Directors or advisory committees; Adaptive technologies: Consultancy, Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees; Janssen pharmaceuticals: Consultancy, Membership on an entity's Board of Directors or advisory committees; Amgen: Consultancy, Membership on an entity's Board of Directors or advisory committees; Spectrum Pharmaceuticals: Consultancy, Membership on an entity's Board of Directors or advisory committees; Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees; BMS: Consultancy, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3763-3763
Author(s):  
Furukawa Shoko ◽  
Masahiro Takeyama ◽  
Midori Shima ◽  
Keiji Nogami

Abstract Factor (F)VIII functions as a cofactor in the tenase complex responsible for phospholipid (PL) surface-dependent conversion of FX to FXa by FIXa. On the other hand, protein S (PS) functions as a cofactor of activated protein C that inactivates FVIII(a) and FV(a). We have reported a new regulatory mechanism on coagulation that PS directly impaired the FXase complex by competing the FIXa-FVIIIa interaction (Takeyama, Br J Haematol. 2008;143:409), and identified the PS-interactive site on the FVIII A2 domain (Takeyama, Thromb Haemost. 2009;102:645). However, the contribution of FVIII light chain (LC) to PS-binding has not been determined. In this study, several approaches were employed to assess a PS-FVIII LC interaction. The binding of FVIII LC to active site-modified FIXa (EGR-FIXa) was inhibited by PS dose-dependently (Ki; 4.6 nM) on ELISA. Because FVIII C2 domain has a binding site for FIXa, we examined whether FVIII C2 domain bound to PS. PS bound to FVIII C2 domain (Kdapp; 283 nM) by the ELISA. A SPR-based assay also revealed that FVIII C2 domain bound to PS (Kd; 62 nM). We have reported that a FIXa-interactive site exits on FVIII C2 domain (residues 2228-2240) (Soeda, J Biol Chem. 2009;284:3379). Therefore, we assessed the interaction of the synthetic peptide spanning the residues (2228-2240) with PS. ELISA showed that the peptide bound to PS (Kdapp; 104 µM). SPR-based assay also revealed that the peptide bound to PS (Kd; 31.4 µM), although scrambled peptide failed to bind to PS. Covalent cross-linking was observed between the biotynated 2228-2240 peptide and PS following reaction with EDC (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride) using SDS-PAGE. This cross-linking formation was blocked by the addition of the unlabeled peptide. Furthermore, N-terminal sequence analysis of the peptide-PS product showed that one basic residue (K2239) could not be detected, supporting that this residue participates in cross-link formation. These results indicate that the 2228-2240 residues in the FVIII C2 domain, in particular K2239, may contribute to a PS-interactive site. To inquire further into the interactive region of FVIII C2 domain to PS, we prepared a stably expressed recombinant B-domainless FVIII mutants (E2228A, D2233A, K2236A, and K2239A), which were polar amino acids in the 2228-2240 residues, subsequently compared interaction with PS of the mutants with B-domainless FVIII wild type. To evaluate the binding affinity to PS, we performed SPR-based assay with the wild type FVIII and the FVIII mutants. The assay showed K2239A bound to PS with ~1.9-fold higher Kd value (28.1 nM) than that of wild type (Kd; 14.7 nM), although E2228A, D2233A, or K2236A bound to PS (Kd; 12.7, 16.3, and 10.3 nM, respectively) with no significant difference compared with wild type. In addition, to evaluate the effect of mutants for FXa generation, we assessed FXa generation assay with wild type or K2239A in the presence or absence PS, because K2239 might contribute to a PS interaction of FVIII. After each FVIII (1 nM) was reacted with various concentrations of PS in the presence of PL (20 µM) for 30 minutes, FVIII was activated by thrombin (30 nM), followed by the reaction with FIXa (40 nM) and FX (300 nM) for 1 minute. Although generated FXa with both wild type and K2239A were reduced in the presence of PS dose-dependently, compared with its absence, the inhibition ratio of K2239A was less than that of wild type (18.2% and 31%, respectively in the presence of 500 nM PS). On the other hand, the Km value on FXa generation of K2239A for various concentrations of FIXa was ~1.8-fold higher than that of wild type (5.5±0.9 and 3.1±0.2 nM, respectively), suggesting that K2239 residue, involved in the FIXa-interactive site, might contribute to the inhibition of FVIII function by PS. In conclusion, FVIII C2 domain, in particular K2239, was possible to play an important role of the inhibitory mechanism to FVIII function by PS, due to the binding to PS. Disclosures Shima: Sysmex Corporation: Patents & Royalties, Research Funding; F. Hoffmann-La Roche Ltd.: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Chugai Pharmaceutical Co., Ltd.: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding. Nogami:Sysmex Corporation: Patents & Royalties, Research Funding; F. Hoffmann-La Roche Ltd.: Honoraria, Membership on an entity's Board of Directors or advisory committees; Chugai Pharmaceutical Co., Ltd.: Honoraria, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 83-83
Author(s):  
Hiroaki Yaoi ◽  
Yasuaki Shida ◽  
Takehisa Kitazawa ◽  
Kunihiro Hattori ◽  
Midori Shima ◽  
...  

Abstract Background : Factor VIII (FVIII) is protected by binding to its carrier protein, von Willebrand factor (VWF) in the circulation. VWF contributes to hemostasis particularly under high shear flow condition by extending its multimeric configuration. By contrast, coagulation factors including FVIII are thought to play a dominant role under low shear. Since FVIII binds to VWF unlike other coagulation factors, FVIII may contribute to thrombus formation even under high shear conditions. FVIII has to be released from VWF and activated to exert its coagulation function. However, the role of interaction between FVIII and VWF on hemostasis under flow conditions needs to be explored in addition to the protective function of VWF. Aims: To analyze the mechanism and role of FVIII and VWF interaction on hemostasis under flow conditions. Methods: Whole blood samples were obtained from patients with type 2A von Willebrand disease (VWD). FVIII, VWF, FVIII/VWF (final concentration; f.c. 1U/mL), FVIII plus ESH8 (f.c. 1 µM), and emicizumab (ACE910; f.c. 100 µg/mL) were added to the blood followed by perfusion into the collagen-coated flow chamber under controlled high (2,500s-1) and low (50s-1) shear conditions. ESH8 is an anti-FVIII antibody that interrupts the release of FVIII from VWF, and emicizumab is a bispecific antibody mimicking activated FVIII (FVIIIa). The concentration of emicizumab was chosen, as it was the highest dose in clinical study. After the perfusion, formed thrombus was fixed and immunostaining was performed to visualize platelets, VWF, thrombin, and FVIII. Thrombi were observed by using confocal laser scanning microscopy and the obtained images were analyzed by Image Pro Premier 3D. Initial thrombus formation was measured as surface coverage (SC) and thrombus development was measured as thrombus volume (TV). Results: SC and TV were impaired in VWD particularly under high shear (high: SC 8.3%, TV 3.9x103μm3, low: SC 2.7%, TV 2.9x103μm3). Addition of FVIII/VWF improved thrombus formation to normal level under both shear conditions (high: SC 37.3%, TV 2.4x104μm3, low SC 4.3%, TV 4.1x103μm3). Addition of VWF improved SC and TV under both shear conditions (high: 40.9%, 1.7x104μm3, low: SC 3.0%, TV 3.3x103μm3), suggesting that the VWF function was crucial under both shear. By contrast, addition of FVIII alone did not improve SC and TV under both shears (high: SC 9.9%, TV 5.0x103μm3, low: SC 2.4%, TV 3.1x103μm3). Since FVIII/VWF had a greater effect on TV than VWF alone, FVIII enhanced thrombus development under high shears, however, this effect required the presence of VWF. FVIII immunostaining demonstrated the binding of FVIII on platelet surface in the FVIII-added experiment and, therefore, FVIII binding alone was not sufficient to initiate coagulation. Since FVIII may need to be activated on the platelet surface in a timely fashion, it was speculated that the optimal delivery from VWF and activation of FVIII on platelets was required for hemostasis. To analyze the role of FVIII and VWF interaction on hemostasis under flow condition, ESH8 was used to modify FVIII/VWF binding by blocking FVIII release. Treatment of FVIII/VWF with ESH8 did not change SC but slightly impaired TV under high shear (high: SC 41.8%, TV 1.8 x104μm3). Thus, the presence of FVIII at thrombus was not enough and the release of FVIII from VWF and presumably activation of FVIII on the platelet surface might be essential for thrombus formation under high shear. Under low shear, both SC and TV were interrupted by ESH8 (SC 2.6%, TV 3.1x103μm3), suggesting the important role of FVIII and coagulation under low shear. Lastly, to analyze the impact of activated FVIII on thrombus formation under flow conditions, emicizumab was evaluated in this system. In contrast to FVIII, emicizumab alone improved thrombus formation (high: SC 26.0%, TV 1.1 x104μm3, low: SC 3.5%, TV 4.2 x103μm3). The rate of improvement in SC and TV was better under low shear than high shear, which implicated the coagulative role of emicizumab. Even under high shear, however, emicizumab enhanced thrombus formation. Therefore, the role of emicizumab in substituting for the activated form of FVIII might be able to rapidly initiate coagulation even under high shear. Conclusion: VWF delivers and releases FVIII in a timely fashion on platelet surface. FVIII has to become active on platelets for hemostasis and FVIIIa can accelerate thrombus formation even under high shear condition. Disclosures Yaoi: Chugai Pharmaceutical Co., Ltd.: Research Funding. Shida:Chugai Pharmaceutical Co., Ltd.: Research Funding. Kitazawa:Chugai Pharmaceutical Co.: Employment, Equity Ownership, Patents & Royalties; Sysmex Corporation: Patents & Royalties. Hattori:Chugai Pharmaceutical Co.: Employment, Equity Ownership, Patents & Royalties. Shima:Sysmex Corporation: Patents & Royalties, Research Funding; Chugai Pharmaceutical Co., Ltd.: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding; F. Hoffmann-La Roche Ltd.: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees. Nogami:F. Hoffmann-La Roche Ltd.: Honoraria, Membership on an entity's Board of Directors or advisory committees; Sysmex Corporation: Patents & Royalties, Research Funding; Chugai Pharmaceutical Co., Ltd.: Honoraria, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 886-886
Author(s):  
Partow Kebriaei ◽  
Matthias Stelljes ◽  
Daniel J. DeAngelo ◽  
Nicola Goekbuget ◽  
Hagop M. Kantarjian ◽  
...  

Abstract Introduction: Attaining complete remission (CR) prior to HSCT is associated with better outcomes post-HSCT. Inotuzumab ozogamicin (INO), an anti-CD22 antibody conjugated to calicheamicin, has shown significantly higher remission rates (CR/CRi and MRD negativity) compared with standard chemotherapy (SC) in patients (pts) with R/R ALL (Kantarjian et al. N Engl J Med. 2016). Pts treated with INO were more likely to proceed to HSCT than SC, which allowed for a higher 2-yr probability of overall survival (OS) than patients receiving SC (39% vs 29%). We investigated the role of prior transplant and proceeding directly to HSCT after attaining remission from INO administration as potential factors in determining post-HSCT survival to inform when best to use INO in R/R ALL patients. Methods: The analysis population consisted of R/R ALL pts who were enrolled and treated with INO and proceeded to allogeneic HSCT as part of two clinical trials: Study 1010 is a Phase 1/2 trial (NCT01363297), while Study 1022 is the pivotal randomized Phase 3 (NCT01564784) trial. Full details of methods for both studies have been previously published (DeAngelo et al. Blood Adv. 2017). All reference to OS pertains to post-HSCT survival defined as time from HSCT to death from any cause. Results: As of March 2016, out of 236 pts administered INO in the two studies (Study 1010, n=72; Study 1022, n=164), 101 (43%) proceeded to allogeneic HSCT and were included in this analysis. Median age was 37 y (range 20-71) with 55% males. The majority of pts received INO as first salvage treatment (62%) and 85% had no prior SCT. Most pts received matched HSCTs (related = 25%; unrelated = 45%) with peripheral blood as the predominant cell source (62%). The conditioning regimens were mainly myeloablative regimens (60%) and predominantly TBI-based (62%). Dual alkylators were used in 13% of pts, while thiotepa was used in 8%. The Figure shows post-transplant survival in the different INO populations: The median OS post-HSCT for all pts (n=101) who received INO and proceeded to HSCT was 9.2 mos with a 2-yr survival probability of 41% (95% confidence interval [CI] 31-51%). In patients with first HSCT (n=86) the median OS post-HSCT was 11.8 mos with a 2-yr survival probability of 46% (95% CI 35-56%). Of note, some patients lost CR while waiting for HSCT and had to receive additional treatments before proceeding to HSCT (n=28). Those pts who went directly to first HSCT after attaining remission with no intervening additional treatment (n=73) fared best, with median OS post-HSCT not reached with a 2-yr survival probability of 51% (95% CI 39-62%). In the latter group, 59/73 (80%) attained MRD negativity, and 49/73 (67%) were in first salvage therapy. Of note, the post-HSCT 100-day survival probability was similar among the 3 groups, as shown in the Table. Multivariate analyses using Cox regression modelling confirmed that MRD negativity during INO treatment and no prior HSCT were associated with lower risk of mortality post-HSCT. Other prognostic factors associated with worse OS included older age, higher baseline LDH, higher last bilirubin measurement prior to HSCT, and use of thiotepa. Veno-occlusive disease post-transplant was noted in 19 of the 101 pts who received INO. Conclusion: Administration of INO in R/R ALL pts followed with allogeneic HSCT provided the best long-term survival benefit among those who went directly to HSCT after attaining remission and had no prior HSCT. Disclosures DeAngelo: Glycomimetics: Research Funding; Incyte: Consultancy, Honoraria; Blueprint Medicines: Honoraria, Research Funding; Takeda Pharmaceuticals U.S.A., Inc.: Honoraria; Shire: Honoraria; Pfizer Inc.: Consultancy, Honoraria, Research Funding; Novartis Pharmaceuticals Corporation: Consultancy, Honoraria, Research Funding; BMS: Consultancy; ARIAD: Consultancy, Research Funding; Immunogen: Honoraria, Research Funding; Celgene: Research Funding; Amgen: Consultancy, Research Funding. Kantarjian: Novartis: Research Funding; Amgen: Research Funding; Delta-Fly Pharma: Research Funding; Bristol-Meyers Squibb: Research Funding; Pfizer: Research Funding; ARIAD: Research Funding. Advani: Takeda/ Millenium: Research Funding; Pfizer: Consultancy. Merchant: Pfizer: Consultancy, Research Funding. Stock: Amgen: Consultancy; Pfizer: Consultancy, Membership on an entity's Board of Directors or advisory committees; Seattle Genetics: Consultancy, Membership on an entity's Board of Directors or advisory committees. Wang: Pfizer: Employment, Equity Ownership. Zhang: Pfizer: Employment, Equity Ownership. Loberiza: Pfizer: Employment, Equity Ownership. Vandendries: Pfizer: Employment, Equity Ownership. Marks: Pfizer: Consultancy, Honoraria, Speakers Bureau; Amgen: Consultancy, Honoraria, Speakers Bureau.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2898-2898
Author(s):  
Vania Phuoc ◽  
Leidy Isenalumhe ◽  
Hayder Saeed ◽  
Celeste Bello ◽  
Bijal Shah ◽  
...  

Introduction: 2-[18F] fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) remains the standard of care for baseline and end of treatment scans for aggressive non-Hodgkin lymphomas (NHLs). However, the role of interim FDG-PET remains not as well defined across aggressive NHLs, especially in the era of high-intensity chemoimmunotherapy. Interim FDG-PET (iPET) can serve as an early prognostic tool, and prior studies evaluating the utility of iPET-guided treatment strategies primarily focused on diffuse large B-cell lymphomas (DLBCL) and frontline R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone). Classification criteria systems assessing response also differ between studies with no clear consensus between use of Deauville criteria (DC), International Harmonization Project (IHP), and the ΔSUVmax method. Methods: This study evaluates our institutional experience with iPET during treatment with DA-EPOCH ± R (dose-adjusted etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin with or without Rituximab) in aggressive NHLs. We retrospectively evaluated 70 patients at Moffitt Cancer Center who started on DA-EPOCH ± R between 1/1/2014 to 12/31/2018 for aggressive NHLs. Response on interim and end-of-treatment (EOT) scans were graded per DC, IHP, and ΔSUVmax methods, and progression free survival (PFS) probability estimates were calculated with chi-square testing and Kaplan Meier method. PFS outcomes were compared between interim negative and positive scans based on each scoring method. Outcomes were also compared between groups based on interim versus EOT positive or negative scans. Results: We identified 70 patients with aggressive NHLs who received DA-EPOCH ± R at our institute. The most common diagnoses were DLBCL (61%) followed by Burkitt's lymphoma (10%), primary mediastinal B-cell lymphoma (9%), plasmablastic lymphoma (7%), gray zone lymphoma (6%), primary cutaneous large B-cell lymphoma (1%), primary effusion lymphoma (1%), and other high-grade NHL not otherwise specified (3%). Of the 43 patients with DLBCL, 21/43 (49%) had double hit lymphoma (DHL) while 7/43 (16%) had triple hit lymphoma (THL), and 3/43 (7%) had MYC-rearranged DLBCL while 2/43 (5%) had double expressor DLBCL. Thirty nine out of 70 (56%) were female, and median age at diagnosis was 58.39 years (range 22.99 - 86.86 years). Most patients had stage IV disease (49/70, 70%), and 43/70 (61%) had more than one extranodal site while 45/70 (64%) had IPI score ≥ 3. Forty-six out of 70 (66%) received central nervous system prophylaxis, most with intrathecal chemotherapy (44/70, 63%). Fifty-five out of 70 (79%) had iPET available while 6/70 (9%) had interim computerized tomography (CT) scans. Fifty-six out of 70 (80%) had EOT PET, and 4/70 (6%) had EOT CT scans. Sustained complete remission occurred in 46/70 (66%) after frontline DA-EPOCH ± R (CR1), and 12/70 (17%) were primary refractory while 5/70 (7%) had relapse after CR1. Four of 70 (6%) died before cycle 3, and 3/70 (4%) did not have long-term follow-up due to transition of care elsewhere. Median follow-up was 15.29 months (range 0.85 - 60.09 months). There was significantly better PFS observed if iPET showed DC 1-3 compared to DC 4-5 (Χ2=5.707, p=0.0169), and PFS was better if iPET was negative by IHP criteria (Χ2=4.254, p=0.0392) or ΔSUVmax method (Χ2=6.411, p=0.0113). Comparing iPET to EOT PET, there was significantly better PFS if iPET was negative with EOT PET negative (iPET-/EOT-) compared to iPET positive with EOT negative (iPET+/EOT-), and iPET+/EOT+ and iPET-/EOT+ had worse PFS after iPET-/EOT- and iPET+/EOT- respectively. This pattern in iPET/EOT PFS probability remained consistent when comparing DC (Χ2=30.041, p<0.0001), IHP (Χ2=49.078, p<0.0001), and ΔSUVmax method (Χ2=9.126, p=0.0104). These findings fit clinical expectations with positive EOT scans indicating primary refractory disease. There was no significant difference in PFS when comparing DLBCL versus non-DLBCL (Χ2=3.461, p=0.0628) or DHL/THL versus non-DHL/THL diagnoses (Χ2=2.850, p=0.0914). Conclusion: Our findings indicate a prognostic role of iPET during treatment with DA-EPOCH ± R for aggressive NHLs. Significant differences in PFS were seen when graded by DC, IHP, and ΔSUVmax methods used in prior studies and when comparing interim versus EOT response. Larger studies are needed to confirm these findings. Disclosures Bello: Celgene: Speakers Bureau. Shah:Novartis: Honoraria; AstraZeneca: Honoraria; Spectrum/Astrotech: Honoraria; Adaptive Biotechnologies: Honoraria; Pharmacyclics: Honoraria; Jazz Pharmaceuticals: Research Funding; Incyte: Research Funding; Kite/Gilead: Honoraria; Celgene/Juno: Honoraria. Sokol:EUSA: Consultancy. Chavez:Janssen Pharmaceuticals, Inc.: Speakers Bureau; Genentech: Speakers Bureau; Kite Pharmaceuticals, Inc.: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 31-31
Author(s):  
Kensuke Matsuda ◽  
Taisuke Jo ◽  
Kazuhiro Toyama ◽  
Kumi Nakazaki ◽  
Hideo Yasunaga ◽  
...  

Background: Real-world data studies showed poorer outcomes in patients with acute promyelocytic leukemia (APL) than randomized controlled trials, because elderly patients were excluded in such trials. Reportedly, the main cause of death was severe bleeding due to disseminated intravascular coagulation (DIC) during induction therapy for APL. The management of DIC was therefore crucially important especially in elderly patients. This study aimed to clarify factors associated with in-hospital death in all patients, and elderly patients with DIC during induction therapy for APL. Study Design and Methods: We retrospectively identified 1,463 patients with newly diagnosed APL who received induction therapy including all-trans retinoic acid (ATRA) between July 2007 and March 2018 from a nationwide inpatient database in Japan. In-hospital death was evaluated with multivariable logistic regression models in all patients, and in ≥60 year-old patients. Anticoagulants included recombinant human soluble thrombomodulin, delteparin (low molecular weight heparin), danaparoid sodium, gabexate mesilate, and nafamostat mesilate which were administered within three days from admission. Patients who died within three days from the admission were excluded from the study to avoid immortal time bias. Results: We identified a total of 1,138 (78%) patients who developed DIC. We excluded 23 patients who died within three days from the admission. The remaining 1,115 patients were analyzed. During hospitalization, 172 (15%) patients died at a median of 13 days (interquartile range: 7-30). Compared with younger patients (20 to 39 years old), elderly patients were significantly associated with higher in-hospital mortality (60 to 79 years old: odds ratio 5.58 [95% confidence interval 3.05-10.22], 80 years or older: 13.51 [6.07-30.08]). Patients who received ATRA monotherapy had significantly higher incidence of in-hospital death (2.48 [1.54-4.01]). Delayed initiation of ATRA was significantly associated with higher mortality (1.60 [1.11-2.30]). A total of 699 patients (63%) received anticoagulant therapies, but none of these were significantly associated with lower mortality. Use of multiple anticoagulants was significantly associated with higher in-hospital mortality (2.47 [1.16-5.26]). Subgroup analyses in patients ≥60 years old were then conducted. During hospitalization, 122 of 416 (29%) patients died at a median of 13 days (interquartile range: 7-29). Both late initiation of conventional chemotherapy and no conventional chemotherapy were significantly associated with higher in-hospital mortality (1.88 [1.01-3.49], 3.25 [1.74-6.06], respectively). Use of recombinant human soluble thrombomodulin and use of multiple anticoagulants were significantly associated with higher mortality (1.91 [1.09-3.35], 2.64 [1.01-6.90], respectively). Conclusions: Elderly patients who developed DIC during induction therapy for APL were significantly associated with higher in-hospital mortality. Immediate initiation of ATRA and early initiation of conventional chemotherapy may have contributed to preferable outcomes. Disclosures Matsuda: Kyowa Kirin: Speakers Bureau. Jo:Tsumura: Other: Belongs to joint program with Tsumura, Research Funding. Toyama:Bristol-Myers Squibb: Speakers Bureau; Eisai: Speakers Bureau; Kyowa Kirin: Speakers Bureau; Celgene: Speakers Bureau; Daiichi Sankyo: Speakers Bureau; Nippon Shinyaku: Speakers Bureau; Chugai Pharmaceutical,: Speakers Bureau; Ono Pharmaceutical: Speakers Bureau; Otsuka Pharmaceutical: Speakers Bureau; Takeda Pharmaceutical: Speakers Bureau. Kurokawa:Ono: Research Funding, Speakers Bureau; Jansen Pharmaceutical: Speakers Bureau; Teijin: Research Funding; Eisai: Research Funding, Speakers Bureau; Shire Plc: Speakers Bureau; Nippon Shinyaku: Research Funding, Speakers Bureau; MSD: Consultancy, Research Funding, Speakers Bureau; Chugai: Consultancy, Research Funding, Speakers Bureau; Sanwa-Kagaku: Consultancy; Pfizer: Research Funding; Otsuka: Research Funding, Speakers Bureau; Astellas: Research Funding, Speakers Bureau; Kyowa Kirin: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Takeda: Research Funding, Speakers Bureau; Bioverativ Japan: Consultancy; Celgene: Consultancy, Speakers Bureau; Daiichi Sankyo: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Sumitomo Dainippon Pharma: Research Funding, Speakers Bureau; Boehringer Ingelheim: Speakers Bureau; Bristol-Myers Squibb: Speakers Bureau.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 338-338
Author(s):  
Bradstock Kenneth ◽  
Emma Link ◽  
Juliana Di Iulio ◽  
Jeff Szer ◽  
Paula Marlton ◽  
...  

Abstract Background: Anthracylines are one of the major classes of drugs active against acute myeloid leukemia (AML). Increased doses of daunorubicin during induction therapy for AML have been shown to improve remission rates and survival. The ALLG used idarubicin in induction therapy at a dose of 9 mg/m2 x 3 days (total dose 27 mg/m2) in combination with high-dose cytarabine and etoposide (Blood 2005, 105:481), but showed that a total idarubicin dose of 36 mg/m2 was too toxic in this context (Leukemia 2001, 15:1331). In order to further improve outcomes in adult AML by anthracycline dose escalation, we conducted a phase 3 trial comparing standard to an increased idarubicin dose during consolidation therapy. Methods: Patients achieving complete remission after 1 or 2 cycles of intensive induction therapy (idarubicin 9 mg/m2 daily x3, cytarabine 3 g/m2 twice daily on days 1,3,5 and 7, and etoposide 75 mg/m2 daily x7; ICE protocol) were randomized to receive 2 cycles of consolidation therapy with cytarabine 100 mg/m2 per day for 5 days, etoposide 75 mg/m2 for 5 days, and idarubicin 9mg/m2 daily for either 2 or 3 days (standard and intensive arms respectively). No further protocol therapy was given. The primary endpoint was leukemia-free survival from randomization to consolidation therapy (LFS) with overall survival (OS) as secondary endpoint. Results: A total of 422 patients with AML (excluding cases with CBF rearrangements or APL) aged 16 to 60 years were enrolled between 2003-10, with 345 (82%) achieving complete remission, and 293 being randomized to standard (n=146) or intensive (n=147) consolidation arms. The median age was 45 years in both arms (range 16- 60), and both groups were balanced for intermediate versus unfavorable karyotypes and for frequency of mutations involving FLT3-ITD and NPM1 genes. Of the randomized patients, 120 in the standard arm (82%) and 95 in the intensive arm (65%) received the second consolidation cycle (p<0.001). The median total dose of idarubicin received in the 2 consolidation courses was 36 mg/m2 (range 17-45), or 99% (47-125%) of the protocol dose in the standard arm, versus 53 mg/m2 (18-73), or 98% (33-136%) of the protocol dose in the intensive arm. The durations of grades 3-4 neutropenia and thrombocytopenia were significantly longer in the intensive arm, but there were no differences in grade 3 or 4 non-hematological toxicities. There were no non-relapse deaths during consolidation on the standard arm and 2 in the intensive (0% vs 1%; p =0.50). Subsequently, 41 patients in the standard arm and 37 in the intensive arm underwent elective allogeneic BMT during first remission. On intention to-treat analysis uncensored for transplant and with a median follow-up time of 5.3 years (range 0.6 - 9.9), there was improvement in LFS in the intensive arm compared with the standard arm (3 year LFS 47% (95% CI 40-56%) versus 35% (28-44%); HR 0.74 (95% CI 0.55-0.99); p=0.045) (Figure 1). The 3 year OS for the intensive arm was 61% (95% CI 54-70%) and 50% (95% CI 43-59%) for the standard arm; HR 0.75 (95% CI 0.54-1.05); p=0.092). Although adverse cytogenetics, presence of FLT3-ITD mutation, and absence of NPM1 mutation were all associated with poorer outcomes, there was no evidence of a benefit of intensive consolidation being confined to specific cytogenetic or gene mutation sub-groups. Conclusion: We conclude that in adult patients in complete remission after intensive induction chemotherapy an increased dose of idarubicin delivered during consolidation therapy results in improved LFS, without increased non-hematologic toxicity. Figure 1. Figure 1. Disclosures Szer: Ra Pharma: Honoraria, Membership on an entity's Board of Directors or advisory committees; Alexion Pharmaceuticals, Inc.: Honoraria, Membership on an entity's Board of Directors or advisory committees; Alnylam: Honoraria, Membership on an entity's Board of Directors or advisory committees. Marlton:Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; AbbVie: Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees; Roche: Honoraria, Membership on an entity's Board of Directors or advisory committees. Wei:Novartis: Consultancy, Honoraria, Research Funding; Roche: Consultancy, Honoraria; CTI: Consultancy, Honoraria; Abbvie: Honoraria, Research Funding; Servier: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding; Amgen: Consultancy, Honoraria, Research Funding. Cartwright:ROCHE: Consultancy, Membership on an entity's Board of Directors or advisory committees. Roberts:Servier: Research Funding; Janssen: Research Funding; Genentech: Research Funding; AbbVie: Research Funding. Mills:Novartis: Membership on an entity's Board of Directors or advisory committees, Other: Meeting attendance sponsorship. Gill:Janssen: Membership on an entity's Board of Directors or advisory committees. Seymour:Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Gilead: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Genentech: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel support, Speakers Bureau; AbbVie: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel support, Research Funding, Speakers Bureau; Takeda: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 42-42 ◽  
Author(s):  
Michele Cavo ◽  
Giulia Perrone ◽  
Silvia Buttignol ◽  
Elisabetta Calabrese ◽  
Monica Galli ◽  
...  

Abstract Abstract 42 We prospectively compared thalidomide-dexamethasone (TD) with bortezomib-thalidomide-dexamethasone (VTD) as induction therapy before, and consolidation after, double autologous stem-cell transplantation (ASCT) in patients with newly diagnosed multiple myeloma (MM). Three 21-d cycles of either VTD (V, 1.3 mg/m2 twice-weekly; T, 200 mg/d through d 1 to 63; D, 320 mg/cycle) or TD were given as induction therapy. Consolidation therapy comprised two 35-d cycles of VTD (V, 1.3 mg/m2 once-weekly; T, 100 mg/d through d 1 to 70; D, 320 mg/cycle) or TD. 474 patients randomized to the VTD (n=236) or TD (n=238) arm were analyzed on an intention-to-treat basis for response rate, PFS and OS. Centrally reassessed CR/nCR rate was significantly higher in the VTD compared with the TD arm after all treatment phases, including induction therapy (30% vs 10%, p<0.0001), double autotransplantation (54% vs 42%, p=0.008) and consolidation therapy (60% vs 44%, p=0.001). Best confirmed overall CR/nCR rate was 71% in the VTD arm compared with 52% in the TD arm (p<0.0001); the corresponding values for VGPR or better were 89% vs 72%, respectively (p<0.0001). To evaluate the role of consolidation therapy we performed a per-protocol analysis of 323 patients, 161 treated with VTD and 162 with TD. Overall, upgraded responses with VTD and TD as consolidation therapy were observed in 55% vs 37% of patients, respectively (p=0.01; OR:1.15-3.77). Furthermore, the probability to improve responses from less than CR before consolidation to CR after consolidation was 28% with VTD vs 15% with TD (p=0.02; OR:1.07-4.57) (p=0.003 using the Mc Nemar's test). Post-consolidation molecular detection of minimal residual disease was the objective of a substudy; detailed results are reported in a separate abstract. Briefly, both qualitative and quantitative analyses confirmed the statistically significant superiority of VTD over TD in effecting higher rates of molecular remissions and reducing the burden of residual myeloma cells after ASCT. Any grade 3–4 non-hematologic adverse events were 10% with VTD (peripheral neuropathy: 1.3%, skin rash: 0.6%) vs 12% with TD. With a median follow-up of 31 months, median PFS was 42 months in the TD arm and was not yet reached in the VTD arm (44-month projected rate: 61%) (HR: 0.62 [CI: 0.45–0.87], p=0.006). Superior PFS in the VTD vs TD arm was retained across patient subgroups with poor prognosis, including those with t(4;14) and/or del(17p). Randomization to VTD overcome the adverse influence of t(4;14) on PFS (40-month projected rates: 69% vs 67% according to the presence or absence of this abnormality, respectively; p=0.6). By the opposite, in the TD arm corresponding median PFS values were 24.5 vs 41.5 months, respectively (p=0.01). The small numbers of patients with del(17p) in both arms of the study precluded a statistical comparison with del(17p)-negative group. In a multivariate analysis, variables favorably influencing PFS were beta2-m lower than 3.5 mg/L (HR:0.47; p=0.000), absence of t(4;14) and/or del(17p) (HR:0.52; p=0.000), randomization to VTD arm (HR:0.57; p=0.002), attainment of at least VGPR (HR:0.50; p=0.009) and CR (HR:0.8; p=0.01). No statistically significant difference between the overall treatment protocols was seen in terms of OS, although curves seemed to initially diverge after 40 months (44-month projected rates: 84% vs 74% for VTD and TD arms, respectively). A multivariate analysis showed the independent role of absence of t(4;14) and/or del(17p) (HR:0.42; p=0.003), ISS stage1-2 (HR:0.49; p=0.02) and randomization to VTD (HR:0.53; p=0.04) in prolonging OS. When time-dependent CR entered the model, absence of t(4;14) and/or del(17p) and less advanced ISS stage retained their positive prognostic value; attainment of CR (strictly related to VTD randomization) was an additional favorable variable. In conclusion, in comparison with the TD arm of the study, 1) VTD induction emerges as a new standard of care for maximizing the degree and speedy of tumor reduction in preparation for ASCT; 2) VTD consolidation effected significantly higher rates of upgraded responses, including CR, and of molecular remissions; 3) double ASCT incorporating VTD as induction and consolidation therapy resulted in significantly longer PFS, a benefit confirmed in a multivariate regression analysis and maintained in the subgroup of patients with adverse cytogenetic abnormalities. Disclosures: Cavo: Janssen-Cilag: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Millennium Pharmaceuticals: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees. Off Label Use: Use of bortezomib and thalidomide as induction therapy before, and consolidation after, autologous transplantation in newly diagnosed multiple myeloma. Baccarani:NOVARTIS: Honoraria; BRISTOL MYERS SQUIBB: Honoraria.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 136-136
Author(s):  
Ze Tian ◽  
Jian-Jun Zhao ◽  
Jianhong Lin ◽  
Dharminder Chauhan ◽  
Kenneth C. Anderson

Abstract Abstract 136 Investigational Agent MLN9708 Target Tumor Suppressor MicroRNA-33b in Multiple Myeloma Cells Ze Tian, Jianjun Zhao, Jianhong Lin, Dharminder Chauhan, Kenneth C. Anderson Medical Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, 02115 MicroRNAs (miRNAs) are 19–25 nucleotide-long noncoding RNA molecules that regulate gene expression both at the level of messenger RNA degradation and translation. Emerging evidence shows that miRNAs play a critical role in tumor pathogenesis by functioning as either oncogene or tumor suppressor genes. The role of miRNA and their regulation in response to proteasome inhibitors treatment in Multiple Myeloma (MM) is unclear. Here, we utilized MLN9708, a selective orally bio-available proteasome inhibitor to examine its effects on miRNA alterations in MM.1S MM cells. Upon exposure to aqueous solutions or plasma, MLN9708 rapidly hydrolyzes to its biologically active form MLN2238. Our previous study using both in vitro and in vivo models showed that MLN2238 inhibits tumor growth and triggers apoptosis via activation of caspases. Moreover, MLN2238 triggered apoptosis in bortezomib-resistant MM cells, and induced synergistic anti-MM activity when combined with HDAC inhibitor SAHA, dexamethasone, and lenalidomide. In the current study, we treated MM.1S cells with MLN2238 (12 nM) for 3 hours and harvested; total RNA was subjected to miRNA profiling using TaqMan® Array Human miRNA A-Card Set v3.0 and the data was analyzed using dChip analysis. Results showed that MLN2238 modulates miRNA expression with a total of 36 miRNA changing their expression profiling (δδCT>1.5 or δδCT <-1.5; 19 were upregulated and 17 showed a downregulation). Among all miRNA, miR-33b was highly (δδCT>7) upregulated in response to MLN2238 treatment. We therefore hypothesized that miR-33b may play a role in MM pathogenesis as well as during MLN2238-induced proteasome inhibition in MM cells. We first utilized quantitative polymerase chain reaction (q-PCR) to validate the changes in miRNA expression profiling. Results confirmed that MLN2238 treatment triggers significant increase in the miR-33b expression in MM.1S cells (2.1 and 2.2 folds at 3h and 6h, respectively; P<0.001). Examination of normal PBMCs and plasma cells showed higher expression of miR-33b than patient MM cells (P<0.001). We further investigated the functional role of miR-33b in MM cells at baseline and during MLN2238 treatment. Drug sensitivity, cell viability, apoptosis, colony formation, and migration assays were performed using cell TilTer-Glo, Annexin V-FITC/PI staining, MTT staining, and Transwell assays, respectively. Signaling pathways modulated post miR-33b overexpression were evaluated by q-PCR, immunoblot, and reporter assays. Our findings show that overexpression of miR-33b significantly decreased cell viability, cell migration, colony formation, as well as increased apoptosis and sensitivity of MM cells to MLN2238 treatment. Targetscan analysis predicted pim-1 as a putative downstream target of miR-33b. Overexpression of miR-33b downregulated pim-1 mRNA and protein expression. To further corroborate these data, we co-tranfected miR-33b and Pim-1-wt or Pim-1-mt in 293T and MM.1S cell lines. In concert with our earlier findings, miR-33b decreases pim-1-wt, but not pim-1-mt reporter activity in both cell lines. Reflecting the overexpression study results, MLN2238 treatment also decreases pim-1-wt, but not pim1-mt reporter activity. Moreover, a biochemical inhibitor of pim1/2 triggered apoptosis in MM cells. Finally, overexpression of miR-33b inhibits tumor growth (P<0.001) and prolongs survival (P<0.001) in both subcutaneous and disseminated human MM xenograft models. In summary, our study suggests that miR-33b is a tumor suppressor, which plays a role during MLN2238-induced apoptotic signaling in MM cells, and provide the basis for novel therapeutic strategies targeting miR-33b in MM. Disclosures: Anderson: Millennium: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees; Acetylon: Equity Ownership.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2424-2424
Author(s):  
Yang Liu ◽  
Yong Zhang ◽  
Phong Quang ◽  
Hai T Ngo ◽  
Feda Azab ◽  
...  

Abstract Abstract 2424 Introduction Tumor necrosis factor receptor super families (TNFRSFs) play an important role in activation of lymphocyte and cell apoptosis. However the function of TNFRSFs in multiple myeloma (MM) remains unknown. Loss of function mutation of Fas antigen (TNFRSF6) was identified in MM cells, thus suggesting the possible role of TNFRSFs in regulating MM pathogenesis. We therefore investigated the epigenetic mechanisms that may mediate inactivation of TNFRSFs and its functional role in MM. Methods Dchip software was utilized for analyzing gene expression dataset. DNA was extracted from both primary CD138+ MM plasma cells and MM cell lines using blood & tissue DNA isolation kit (Qiagen, Inc.). Expression of GITR in primary CD138+ plasma cells was detected by Imunohistochemistry (IHC) DNA methylation was analyzed by methylated DNA immunoprecipitation (Medip) assay and bisulfate sequencing. 5'azacytidine was used to demethylate genomic DNA. Gene expression was detected by qRT-PCR and confirmed at the protein level by flow cytometry and western-blot. Over-expression of GITR was obtained in MM1.S cells by using GITR recombinant plasmid and electroporation. Apoptosis was determined using Annexin/PI staining and flow cytometry analysis. Activation of apoptotic signaling was studied by western blot. Cell survival and proliferation were analyzed by MTT and BrdU assay, respectively. Recombinant GITR-lentivirus was obtained from the supernatant of culture medium after 72 hours transfection in 293 cells. GFP positive MM cells were sorted and analyzed by flow cytometry. In vivo effect of GITR on MM tumor growth was determined by injection of GITR over-expressing MM cells in null mice. Mice skull, femur and vertebrae were isolated after 4 weeks injection. Anti-human CD138+ mAb microbead was used to detect MM cells extracted from mice tissue by flow cytometry. Results Gene-expression profiling showed down-regulation of TNFRSFs, including TNFRSF11A, TNFRSF11B, TNFRSF8, TNFRSF10C, TNFRSF9, TNFRSF21, TNFRSF1B, TNFRSF1A and TNFRSF18, compared to normal plasma cells. Moreover, Our IHC results also showed that GITR expression was positive in primary CD138+ plasma cells from 9 normal bone marrow, but negative in 9 MM samples. Importantly, we found that low GITR expression significantly correlated with MM progression. Indeed, GITR gene levels were lower in smoldering and active MM patients compared to MGUS patients and normal donors. Promoter CpG island (CGI) methylation of GITR was indentified in 5 out of 7 MM primary bone marrow (BM)-derived CD138+ cells but not in normal BM-derived plasma cells. Bisulfate sequencing and Medip assay showed that methylation of GITR was significantly associated with GITR expression in 5 MM cell lines, including MM1.S, OPM1, U266, RPMI and INA6. Promoter CGI of GITR was highly methylated leading to complete silencing of GITR in MM1.S cell line. GITR expression was significantly up-regulated in MM cells upon treatment with the 5'azacytidine. MTT and BrdU assay revealed that the proliferation and survival of MM1.S cells was disrupted in the GITR over-expressing MM1.S cells, notably with inhibition of cell proliferation compared to control vector infected cells. Moreover induction of cytotoxicity in GITR over-expressing cells was confirmed by using GFP competition assay. GITR-induced apoptosis was supported by induction of caspase 8 and 3 cleavage. The inhibition of human CD138+ plasma cell growth in the bone marrow of SCID mice using a disseminated MM xenograft model was observed in the experimental group injected with GITR expressing cells compared to the control group after 4 weeks injection. Conclusion Our findings uncovered a novel epigenetic mechanism contributing to MM pathogenesis, showing the role of GITR methylation as a key regulator of MM cell survival. Disclosures: Roccaro: Roche:. Ghobrial:Novartis: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Research Funding; Noxxon: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document