scholarly journals Dysregulated Aid/Apobec Family Proteins Promote Genomic Instability in Multiple Myeloma

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 803-803
Author(s):  
Srikanth Talluri ◽  
Mehmet Kemal Samur ◽  
Leutz Buon ◽  
Stekla A Megan ◽  
Purushothama Nanjappa ◽  
...  

Abstract The AID/APOBEC family of cytidine deaminase proteins includes AID (activity induced deaminase), and 10 related APOBEC enzymes (A1, A2, A3A, A3B, A3C, A3D, A3F, A3G, A3H and A4). AID has been well-studied for its role in somatic hyper mutation and class switch recombination of immunoglobulin genes whereas APOBECs (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like) have been shown to have roles in mRNA editing and in antiviral immunity. Dysregulated activity of APOBECs causes C >T transitions or C>G, C>A transversions in DNA. We have recently shown APOBEC signature mutation pattern in multiple myeloma (MM) genomes (Bolli et al Nat. Comm. 2014), and interestingly, the APOBEC mutation signature correlates with sub clonal diversity in myeloma. A role for the AID/APOBECs in generation of somatic mutations has also been proposed in a variety of other cancers based on identification of APOBEC signature mutations In order to understand which APOBECs are dysregulated in myeloma, we performed RNA sequencing analysis of primary myeloma cells from 409 newly-diagnosed MM patients and myeloma cell lines. Our analysis showed elevated expression of several APOBEC family members; mainly A3A, A3B, A3C, and A3G. We then optimized a plasmid-based functional assay and found high cytidine deaminase activity in extracts from a number of myeloma cell lines and patient derived CD138+ cells compared to CD138+ cells from healthy donors, suggesting that APOBECs are dysregulated in myeloma. We then investigated the impact of elevated APOBEC expression/function on overall genome maintenance and acquisition of genomic changes (such as amplifications, deletions) overtime. We used shRNA-mediated knockdown of specific APOBEC proteins in myeloma cell lines and investigated the acquisition of genomic changes in control and knockdown cells during their growth in culture, using SNP (Single Nucleotide Polymorphism) arrays and WGS (whole genome sequencing) platforms. Our results with both approaches showed significant reduction in the accumulation of copy number changes (both amplifications and deletions) and overall mutation load after APOBEC knockdown. Evaluation with both the SNP and WGS showed that when control and APOBEC knockdown cells were cultured for three weeks, the acquisition of new copy number and mutational changes throughout genome were reduced by ~50%. We next investigated the relationship between APOBEC expression/activity in MM and other DNA repair pathways. Using an in vitro HR activity assay, we measured HR activity in extracts from control and APOBEC knockdown cells. Depletion of APOBEC proteins resulted in 50-80% reduction in in vitro HR activity of the extracts. We also evaluated correlation between HR activity and gene expression using RNA-seq data from myeloma cells derived from 100 patients at diagnosis and identified the genes whose expression correlated with HR activity. Elevated expression of APOBECs 3D, 3G and 3F significantly correlated with high HR activity (R=0.3; P≤0.02), suggesting their relevance to HR. Analyzing genomic copy number information for each patient we have also observed significant correlation between higher expression of A3G and increased genomic instability in this dataset (P=0.0045). In summary, our study shows that dysregulated APOBECs induce mutations and genomic instability, and inhibiting APOBEC activity could reduce the rate of accumulation of ongoing genomic changes. This data sheds light on biology of the disease as well as clonal evolution. Disclosures Munshi: Amgen: Consultancy; Oncopep: Patents & Royalties; Celgene: Consultancy; Janssen: Consultancy; Takeda: Consultancy; Merck: Consultancy; Pfizer: Consultancy.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1218-1218 ◽  
Author(s):  
Edward Laane ◽  
Purushothama Nanjappa ◽  
Subodh Kumar ◽  
Florence Magrangeas ◽  
Stephane Minvielle ◽  
...  

Abstract Understanding mechanisms underlying genomic instability is critical in delineating pathogenesis and development of new treatments for prevention and treatment of cancer. We have previously shown that dysregulated homologous recombination (HR) significantly contributes to genomic instability and progression in multiple myeloma (MM). To identify the regulators of HR and genome stability in MM, we conducted a functional shRNA screen and identified XRCC5 (Ku80) as a novel regulator of HR in MM cells. XRCC5 has been known to work as part of DNA ligase IV-XRCC4 complex in the repair of DNA breaks by non-homologous end joining (NHEJ) and the completion of V(D)J recombination events. Evaluation by Western blotting showed that all myeloma cell lines tested (RPMI, MM1S, OPM2, MM1R, U266, ARP, H929) had elevated expression of XRCC5, ranging from 3- to 10-fold elevation relative to average expression in two normal PBMC samples. Expression profiling showed a wide range of XRCC5 expression in myeloma patients, with a subset of patients with very high expression. To investigate the role of XRCC5 in ongoing acquisition of genomic changes, we investigated the association of XRCC5 with genomic instability using two different patient datasets (gse26863, n=246 and IFM 170 pt dataset) in which both the gene expression and genomic copy number information for each patient was available. Copy events were defined as changes observed in ≥ 3 and/or 5 consecutive SNPs. Higher XRCC5 expression significantly correlated with increase in the number of copy number change events in both the 170 dataset (p ≤ 0.005 for amplifications and p = 0.0001 for deletions) as well as in gse26863 dataset (p ≤ 0.004 for amplifications and p ≤ 0.00003 for deletions). To understand mechanisms by which XRCC5 regulates HR in myeloma cells, we investigatedprotein-protein interactions using a custom protein array coated with antibodies against major DNA repair and cell cycle proteins. Array was sequentially incubated with MM cell lysate and HRP-conjugated anti-XRCC5 antibody, and interacting partners were then identified by their address on the array. Investigation in two different cell lines (RPMI and U266) showed that XRCC5 in myeloma interacts with XRCC4 (an NHEJ protein), a panel of major HR regulators (RAD51, RAD52, BRCA2, BRCA1, BARD1, P73, P53, C-ABL) and with components of cell cycle including CDC42, CDK1 (which controls entry from G2 to mitosis), CDK4, CDK6, CHK, CDC36, CDC34, and cyclins E and H. Consistent with these data, knockdown (KD) of XRCC5 was associated with reduced HR as well as reduced proliferation rate followed by a complete cell death over a period of two to three weeks in different experiments, in all 3 myeloma cell lines tested. Moreover, the investigation in U266 cells showed that XRCC5-KD is associated with 3-fold increase in the fraction of cells in G2 phase of cell cycle. Importantly, the elevated expression of XRCC5 was associated with shorter event free (p < 0.013) as well as poor overall survival (p < 0.008) in 170 patient dataset. We evaluted the expression and clinical correlation of XRCC5 in RNA-seq data from 311 newly-diagnosed MM patients and observed that the elevated expression of XRCC5 also correlated with event free survival (p = 0.03). In summary, we report that XRCC5, besides its known role in NHEJ, has important roles in HR, cell cycle and may be involved in the crosstalk among these DNA repair pathways. Elevated XRCC5 expression is associated with dysregulation of HR with consequent impact on survival of myeloma patients. Elevated XRCC5 is, therefore, a promising new target to inhibit/reduce genomic evolution as well as MM cell growth. Disclosures Avet-Loiseau: celgene: Membership on an entity's Board of Directors or advisory committees; onyx: Membership on an entity's Board of Directors or advisory committees; onyx: Membership on an entity's Board of Directors or advisory committees; jansen: Membership on an entity's Board of Directors or advisory committees; millenium: Membership on an entity's Board of Directors or advisory committees; jansen: Membership on an entity's Board of Directors or advisory committees; BMS: Membership on an entity's Board of Directors or advisory committees; BMS: Membership on an entity's Board of Directors or advisory committees; millenium: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 862-862 ◽  
Author(s):  
Masood Shammas ◽  
Subodh Kumar ◽  
Jagannath Pal ◽  
Puru Nanjappa ◽  
Mehmat Samur ◽  
...  

Abstract We have previously demonstrated that elevated homologous recombination (HR) activity mediates genomic instability and progression in myeloma. We, therefore, hypothesized that mechanisms underlying dysregulation of HR, drive genomic instability and have potential to serve as novel markers of progression and target to make cancer cells static. In an attempt to identify molecular intermediates underlying increased HR, we conducted a high-throughput shRNA screen using HR activity in MM cells as an endpoint, and identified split hand/split foot malformation locus 1 - SHFM1 - as a novel regulator of HR in myeloma. We demonstrate that suppression of SHFM1 using specific lentiviral shRNA knockdown inhibits HR activity in myeloma as well as other (esophageal) cancer cells. Suppression of HR activity is also associated with reduction in spontaneous DNA breaks thus having a positive impact on genomic integrity. We have also observed that suppression of SHFM1 gene lead to reduction in acquisition of new genomic changes by both copy number alteration as well as SNPs. Evaluation of expression profile in 330 MM patients and 18 normal plasma cells indicated that the gene is overexpressed in myeloma, relative to normal plasma cells (P = 0.0059). Expression of this gene in myeloma also significantly correlates with its copy number (R=0.43; P<0.00000004). To understand the molecular mechanism of its overexpression in myeloma, we evaluated DNA methylation changes associated with altered expression of this gene. We investigated CpG sites in the promoter region of SHFM1 gene using primers with sodium bisulfite converted DNA-specific design. The primers were designed such that they avoid annealing to CpG sites at the region of interest to the maximum extent possible. Samples were bisulfite converted and amplification of all samples using specific primer pairs was performed, and then massively parallel sequenced and analyzed. We observed methylated CpG at two SHFM1 gene locations in PBMC but unmethylated in all 12 out of 12 myeloma cell lines at first location and in 9 out of 12 myeloma cell lines at second cite (Fisher’s exact test for comparisons of PBMC vs. average methylation ratios in caner samples for two locations was P=1.38E-13 and 0.05, respectively). In summary our results highlight SHFM1 as an important gene modulating genomic instability and its control by methylation provides an insight into epigenomic control of DNA stability. Disclosures No relevant conflicts of interest to declare.


2004 ◽  
Vol 52 (5) ◽  
pp. 335-344 ◽  
Author(s):  
Naomi Gronich ◽  
Liat Drucker ◽  
Hava Shapiro ◽  
Judith Radnay ◽  
Shai Yarkoni ◽  
...  

BackgroundAccumulating reports indicate that statins widely prescribed for hypercholesteromia have antineoplastic activity. We hypothesized that because statins inhibit farnesylation of Ras that is often mutated in multiple myeloma (MM), as well as the production of interleukin (IL)-6, a key cytokine in MM, they may have antiproliferative and/or proapoptotic effects in this malignancy.MethodsU266, RPMI 8226, and ARH77 were treated with simvastatin (0-30 μM) for 5 days. The following aspects were evaluated: viability (IC50), cell cycle, cell death, cytoplasmic calcium ion levels, supernatant IL-6 levels, and tyrosine kinase activity.ResultsExposure of all cell lines to simvastatin resulted in reduced viability with IC50s of 4.5 μM for ARH77, 8 μM for RPMI 8226, and 13 μM for U266. The decreased viability is attributed to cell-cycle arrest (U266, G1; RPMI 8226, G2M) and cell death. ARH77 underwent apoptosis, whereas U266 and RPMI 8226 displayed a more necrotic form of death. Cytoplasmic calcium levels decreased significantly in all treated cell lines. IL-6 secretion from U266 cells was abrogated on treatment with simvastatin, whereas total tyrosine phosphorylation was unaffected.ConclusionsSimvastatin displays significant antimyeloma activity in vitro. Further research is warranted for elucidation of the modulated molecular pathways and clinical relevance.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4474-4474
Author(s):  
Subodh Kumar ◽  
Leutz Buon ◽  
Srikanth Talluri ◽  
Jialan Shi ◽  
Hervé Avet-Loiseau ◽  
...  

Abstract As in all cancers, genomic instability leads to ongoing acquisition of new genetic changes in multiple myeloma (MM). This adaptability underlies the development of drug resistance and progression in MM. This genomic instability is driven by cellular processes, mainly related with DNA repair and perturbed by functional changes in limited number of genes. Since kinases play a critical role in the regulation of biological processes, including DNA damage/repair signaling and are relatively easy to screen for inhibitors, we investigated for novel genes involved in the acquisition of new genomic changes in MM. Using a large genomic database which had both the gene expression and CGH array-based copy number information (gse26863, n=246), we first identified a total of 890 expressed kinases in MM and correlated their expression with genomic instability defined as a change in ≥3 and/or 5 consecutive amplification and/or deletion events. We identified 198 kinases whose elevated expression correlated with increased genomic instability (based on FDR ≤ 0.05). Amongst these kinases, using univariate Cox survival analysis, elevated expression of 15 kinases correlated with poor overall as well as event free survival (P ≤0.05) in two MM datasets (IFM70, n=170; gse24080; n=559). We further confirmed the correlation of these 15 genes in both EFS and OS in additional two MM datasets (MMRF CoMMpass Study, IFM-DFCI 2009) as well as in additional solid tumor datasets from TCGA from patients with lung and pancreatic adenocarcinoma (P values ranging from 0.01 to <0.000002). A pathway analysis identified phosphorylation and regulation of proteasome pathway, mitotic spindle assembly/checkpoint, chromosomal segregation and cell cycle checkpoints as among major pathways regulated by these genes. To investigate the relevance of these genes with genomic instability, we performed a functional siRNA screen to evaluate impact of their suppression on homologous recombination (HR). PDZ Binding Kinase (PBK) was one of the top genes whose knockdown caused the maximal inhibition of HR activity in initial screen. To investigate it further in detail, we suppressed PBK in MM cells using shRNA and confirmed that its suppression significantly reduces HR activity. PBK-knockdown also reduced gH2AX levels (marker of DNA breaks) measured by Western blotting and decreased number of micronuclei (a marker of ongoing genomic rearrangements and instability) as assessed by flow cytometry . A small molecule inhibitor of PBK also confirmed a similar reduction in gH2AX levels as well as micronuclei, indicating inhibition of spontaneous DNA breaks and genomic instability. Using mass spectrometry and co-immunoprecipitation, we identified that PBK interacts with FEN1, a nuclease with roles in base excision repair and HR pathways. We confirmed that PBK induces phosphorylation of FEN1 and that inhibition of PBK, suppressed the phosphorylation of FEN1, RAD51 expression and gH2AX levels and it reversed FEN1-induced HR activity. These results confirm that phosphorylation of FEN1 nuclease by PBK contributes to its ability to impact DNA breaks, HR and genome stability in MM. PBK inhibition also significantly sensitized MM cells to melphalan and inhibited cell viability in a panel of MM cell lines (IC50 in MM cell lines ~20-30 nM vs ~100 nM in normal PBMCs) at the same time also reversed melphalan-induced genomic instability, as assessed by micronucleus assay. These data identify PBK as an important target affecting genomic instability, and its inhibitor as a potential drug, to inhibit genomic evolution and MM cell growth. Disclosures Munshi: OncoPep: Other: Board of director.


2019 ◽  
Vol 98 (11) ◽  
pp. 2569-2578
Author(s):  
Ella Willenbacher ◽  
Karin Jöhrer ◽  
Wolfgang Willenbacher ◽  
Brigitte Flögel ◽  
Richard Greil ◽  
...  

Abstract Treatment results for multiple myeloma and plasma cell leukemia have considerably improved, but cure remains elusive and establishing new therapeutic approaches constitutes a major unmet clinical need. We analyzed the anti-myeloma properties of the aza-anthracenedione pixantrone which has been successfully used in a phase III study for the treatment of patients with aggressive non-Hodgkin’s lymphoma as monotherapy as well as in combination regimes in vitro and in an adapted in vivo model (ex ovo chicken chorioallantoic membrane (CAM) assay). Pixantrone significantly inhibited proliferation and metabolic activity of all investigated myeloma cell lines. Importantly, anti-myeloma effects were more pronounced in tumor cell lines than in stromal cells, mesenchymal stem cells, and peripheral blood mononuclear cells of healthy controls. Apoptosis of myeloma cell lines was observed only after a 7-day incubation period, indicating a fast cytostatic and a slower cytotoxic effect of this drug. Pixantrone reduced the viability of primary plasma cells of patients and induced downregulation of myeloma-cell growth in the CAM assay. Additionally, we demonstrate in vitro synergism between pixantrone and the histone deacetylase inhibitor panobinostat with respect to its anti-proliferative features. From these data, we conclude that systematic investigations of the clinical usefulness of pixantrone in the framework of controlled clinical trials are clearly indicated (e.g., in penta-refractory patients).


2005 ◽  
Vol 25 (16) ◽  
pp. 7260-7269 ◽  
Author(s):  
Valerie Blanc ◽  
Jeffrey O. Henderson ◽  
Elizabeth P. Newberry ◽  
Susan Kennedy ◽  
Jianyang Luo ◽  
...  

ABSTRACT apobec-1 complementation factor (ACF) is an hnRNP family member which functions as the obligate RNA binding subunit of the core enzyme mediating C-to-U editing of the nuclear apolipoprotein B (apoB) transcript. ACF binds to both apoB RNA and apobec-1, the catalytic cytidine deaminase, which then results in site-specific posttranscriptional editing of apoB mRNA. Targeted deletion of apobec1 eliminates C-to-U editing of apoB mRNA but is otherwise well tolerated. However, the functions and potential targets of ACF beyond apoB mRNA editing are unknown. Here we report the results of generating acf knockout mice using homologous recombination. While heterozygous acf +/ − mice were apparently healthy and fertile, no viable acf − / − mice were identified. Mutant acf − / − embryos were detectable only until the blastocyst (embryonic day 3.5 [E3.5]) stage. No acf − / − blastocysts were detectable following implantation at E4.5, and isolated acf − / − blastocysts failed to proliferate in vitro. Small interfering RNA knockdown of ACF in either rat (apobec-1-expressing) or human (apobec-1-deficient) hepatoma cells decreased ACF protein expression and induced a commensurate increase in apoptosis. Taken together, these data suggest that ACF plays a crucial role, which is independent of apobec-1 expression, in cell survival, particularly during early embryonic development.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4874-4874
Author(s):  
Caixia Li ◽  
De Pei Wu ◽  
Junjie Cao ◽  
Xiaojin Wu ◽  
Xiao Ma ◽  
...  

Abstract Multiple myeloma(MM) is a monoclonal expansion of malignant cells with a plasmablast-plasma cell morphology that is almost exclusively localized to the bone marrow, except at the final stages of disease, when they proliferate in the extramedullary area. The mechanisms of the selective homing of MM cells to the bone marrow compartment are poorly understood. The chemokine stromal cell-derived factor-1 (SDF-1) and its receptor CXCR4 contribute to stem cell homing and play a role in trafficking of leukemic cells. In this study we have investigated expression and biological behavior of SDF-1/CXCR4 in MM-derived cell lines and primary MM cells. FACS and RT-PCR analysis was used to study the expression of CXCR4 and ICAM-1(CD54) on the surface of MM cells from 4 IL-6 dependant cell lines (XG1,XG2,XG6 and XG7) and 25 freshly isolated tumor samples from patients with diagnosed MM. Mononuclear cells were purified by positive selection of magnetical and FACS sorting. Chemotaxis assay through transwell bore polycaronate and ELISA assay were employed to monitor the SDF-1, IL-6, and sICAM-1 levels. We found that[circ1]Fresh MM cells and MM cell lines expressed various levels of functional CXCR4 ranging from 23.1% to 77.7%,which was correlated with the in vitro migration ability of MM cells[(23.2±1.08)%, P<0.01]; [circ2]SDF-1 levels in the bone marrow(BM) of MM patients were significantly higher than the those of healthy persons (3489.23±651.63)pg/ml, (2818.57±597.79)pg/ml, P<0.05; but plasma levels of SDF-1 in peripheral blood of MM patients were lower than those of healthy persons[(1973±133)pg/ml, (2334.857±574.92), P=0.062]; [circ3]Plasma levels of PCL(4097.14±680.71) were significantly higher than those of healthy persons, P<0.01. The results firstly demonstrated abnormal expression of SDF-1 and its receptor CXCR4 on Human MM cells, which is closely correlated with the migration of MM cells. Furthermore, we discovered that SDF-1 could up-regulate the expression of ICAM-1 on MM cells; the plasma level of soluble ICAM-1 was correlated with the expression of CXCR4 on MM cells. These findings suggested that SDF-1/CXCR4 axis play a key role on the trafficking of MM cells via mediating the effect of adhesion molecules. Moreover, we observed higher plasma levels of IL-6 in PB of 60% MM patients compared with those of healthy individuals. Finally, the levels of IL-6 were closely correlated with SDF-1 levels (γ=0.8, P<0.01), These data indicated that in the IL-6-dependent myeloma cell lines or fresh myeloma samples and myeloma cell growth triggered by SDF-1 maybe due to up-regulation of autocrine and paracrine IL-6 by myeloma cells and stromal cells in BM. The results suggested that the expression of CXCR4 have an essential role in the proliferation and migration of myeloma cells in patients with multiple myeloma.In conclusion, MM cells expressed various levels of functional CXCR4, which were correlated with the migration ability of MM cells in vitro; SDF-1/CXCR4 axis plays a key role in the trafficking of MM cells via mediating the effect of adhesion molecules; The plasma levels of IL-6 closely correlated with SDF-1 plasma levels, myeloma cell growth triggered by SDF-1 may be due to up-regulation of autocrine and paracrine IL-6 by myeloma cells and stromal cells in BM. All these suggested that the expression of CXCR4 play an essential role in the proliferation and migration of myeloma cells in patients with multiple myeloma.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3534-3534
Author(s):  
Mohd S. Iqbal ◽  
Ken-ichiro Otsuyama ◽  
Karim Shamsasenjan ◽  
Saeid Abroun ◽  
Jakia Amin ◽  
...  

Abstract Human myeloma cells have the marked phenotypic heterogeneity of surface marker expressions, possibly because of loss of PAX-5 expression. Especially, ectopic expression of CD56, one of non-B cell lineage markers, is frequently detected on primary myeloma cells from more than 80% patients with overt myeloma. However, only 2 (NOP2 and AMO1) out of 10 myeloma cell lines were CD56(+). In primary myeloma cells as well as CD56(−) myeloma cell lines, the treatment with forskolin could induce the expression of CD56 in the in vitro culture. In most CD56(+) primary myeloma cells as well as myeloma cell lines, the expressions of neuronal cell markers such as neuron specific enolase (NSE), nestin, β-tubulin III or chromogranin A were found coincidentally. By gene expression profiling, CD56(+) myeloma cell lines showed the marked expressions of transcription factors involved in neuronal cell lineage. On the other hand, addition of IL-6 down-regulated the expression of CD56 in CD56(+) myeloma cell lines in the in vitro culture. In 13 out of 60 patients with overt myeloma, these myeloma cells showed CD56(−) and their values of plasma CRP were significantly increased and MPC-1(−)CD45(+) immature myeloma cells were also increased compared to those in CD56(+) myeloma cases. Therefore, these results indicate that the expression of CD56 is possibly due to phenotypic changes into neuronal cell lineage, and IL-6 can block these phenotypic changes, keeping PAX-5(−) myeloma cells being uncommitted cells to any lineage.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4737-4737
Author(s):  
Abul Islam ◽  
Ken-ichiro Otsuyama ◽  
Jakia Amin ◽  
Saeid Abroun ◽  
Karim Shamsasenjan ◽  
...  

Abstract The chemokine, stromal cell-derived factor 1 (SDF-1; CXCL12) and its receptor, CXCR4 are considered to be essentially required for plasma cell homing to the bone marrow (BM). It is well known that plasma cells in the BM (long-lived plasma cells) survive for a long time and have the constitutively high NF-kB activity. Since human myeloma cells are considered to be derived from these committed long-lived plasma cells, we investigated the role of SDF-1 on the survival of primary myeloma cells from myeloma patients and the possible relationship with NF-kB activity. First, we confirmed that all primary myeloma cells expressed CXCR4 but not CCR9 or CCR10 receptors on their surface and the levels of CXCR4 expression apparently correlated with maturity of BM plasma cells; mature myeloma cells (MPC-1+) as well as polyclonal plasma cells expressed higher levels of CXCR4 than those on immature myeloma cells (MPC-1-). The production of SDF-1 was found strongly in BM stromal cells but not in primary myeloma cells as well as myeloma cell lines. On the other hand, high DNA binding activity of NF-kB was constitutively detected in primary myeloma cells as well as myeloma cell lines, and these NF-kB activities significantly correlated with the expression levels of CD54 on their surface, for CD54 gene is one of the strict NF-kB target genes. Based on the expression levels of CD54 protein, interestingly, primary myeloma cells showed weaker NF-kB activities than those in monoclonal plasma cells from MGUS and polyclonal plasma cells from polyclonal gammopathy. Plasma concentrations of SDF-1 were also significantly correlated to the expression levels of CD54 on primary myeloma cells significantly (P<0.01). Furthermore, it was confirmed that addition of SDF-1 significantly increased the expression levels of CD54 in the in vitro culture of primary myeloma cells. Therefore, these results indicate that SDF-1 is responsible for high expression levels of CD54 and possibly the constitutively high NF-kB activity in primary myeloma cells.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2639-2639
Author(s):  
Silvia CW Ling ◽  
Angela M Nikolic ◽  
Ammira Al-Shabeeb ◽  
Edwin Lau ◽  
Phoebe Joy Ho ◽  
...  

Abstract Bortezomib is the first proteasome inhibitor in clinical use. It is particularly effective in myeloma compared with other cancers; as a single agent, its response rate in relapsed myeloma is about 40%. Nevertheless, a large proportion of patients are primarily resistant and acquired bortezomib resistance is also an emerging issue. The mechanism of bortezomib resistance in myeloma remains elusive. We have previously shown that bortezomib sensitivity correlates inversely with the levels of XBP-1 mRNA in vitro and in myeloma patients. XBP-1 is a major regulator of the unfolded protein response (UPR), which is essential for immunoglobulin folding and assembly, and plasma cell development. Previous studies suggested that immunoglobulin production sensitises myeloma cell lines to proteasome inhibitors (S Meister, et al., 2007, Cancer Res 67:1783). We hypothesize that dependence on XBP-1 and the UPR mediate sensitivity to bortezomib. The goal was to develop bortezomib resistant myeloma cell lines, study their phenotype, characterise the mechanism of resistance and, in particular, study the changes in the UPR. Bortezomib resistant sublines (9 in total) were derived from 4 myeloma cell lines (KMS-11, H929, U266 and OPM2), by long term exposure to bortezomib. The fold resistance varies from 3 to 12 and is stable for at least 4 passages without bortezomib. During the evolution of resistance, the myelomas all adopted adherent growth, independent of the morphology of the parent cell lines. When adherent versions of the parent cell lines were derived without exposure to bortezomib, they were, surprisingly, resistant to bortezomib. All bortezomib-resistant myeloma sublines downregulated XBP-1 mRNA levels and the reduction was correlated with the fold resistance. Moreover, splicing of XBP-1 mRNA to the active form was also reduced. The adherent versions of the parent cell lines that showed de novo resistance to bortezomib also had lower levels of XBP-1. Bortezomib normally induces XBP-1 expression and splicing acutely within 12–24 hours (AH Lee, et al., 2003. PNAS 100: 9946) but the resistant sublines were less responsive than the sensitive parents in this respect. Protein levels of other components of the UPR were evaluated by immunoblotting; BiP, phosphorylated-eIF2α, ATF6α and p58IPK were found to be unchanged in the resistant sublines. Cytoplasmic and secreted immunoglobulins were assayed by immunoblotting and ELISA respectively but no differences between the parent and resistant sublines were observed. In a small cohort of relapsed/refractory patients whose bone marrow biopsy was collected prior to bortezomib treatment, the quantity of intracytoplasmic light chain in the myeloma cells, as detected by flow cytometry, did not predict clinical response. The bortezomib-resistant myeloma sublines showed significant cross-resistance to doxorubicin and, to a lesser extent, vincristine, but none to melphalan. The cross-resistance is associated with adherent growth, as it was also observed in the adherent versions of the parent cell lines which were never exposed to bortezomib. Moreover, functional analysis of the multi-drug transporter activity, by drug accumulation assay, showed no difference between parent and resistant sub-lines. These results suggest that resistance to bortezomib is associated with downregulation of the IRE-XBP-1 pathway, but not necessarily other components of the UPR, consistent with observations by others concerning BiP (DT Rutkowski, et al., 2006. Plos Biology 4, e374). The association between adherence, bortezomib resistance and low XBP-1 requires further study.


Sign in / Sign up

Export Citation Format

Share Document