scholarly journals Some Data on Mechanism of Leukopenia and Leukocytosis Following Irradiation

Blood ◽  
1964 ◽  
Vol 23 (1) ◽  
pp. 27-37 ◽  
Author(s):  
JULIA GIDÁLI ◽  
IMRE FEHÉR ◽  
Julia Osgyáni

Abstract 1. In rabbits irradiated with 150 to 600 r, granulocytosis is preceded by a prompt significant granulocytopenia developing 5-15 minutes after irradiation but persisting for a short time. 2. The plasma taken at the minimum of the initial granulocytopenia produced a similar two-phase reaction when injected into normal animals: a promptly developing significant granulocytopenia persisting for a short period followed by prolonged granulocytosis. Prolonged thrombocytopenia might be induced by the very same plasma. 3. The above-mentioned reactions may he reproduced satisfactorily with the administration of dilute starch solutions. 4. On the basis of the results obtained, it seems likely that the agent demonstrable in the plasma after irradiation, and influencing the level of circulating granulocytes and thrombocytes, is not a toxin (leukotoxin) but a substance that may be formed following physiologic stimuli as well.

1992 ◽  
Vol 286 ◽  
Author(s):  
Takeshi Okutani ◽  
Yoshinori Nakata ◽  
Masaakt Suzuki ◽  
Yves Maniette ◽  
Nobuyoshi Goto ◽  
...  

ABSTRACTSiC fine particles were synthesized by the gas-phase thermal decomposition of tetramethylsilane (Si(CH3)4) in hydrogen under microgravity of 10−4G for 10 sec. Rapid heating to the temperature over 800°C which is required for thermal decomposition of Si(CH3)4) under short-time microgravity was attained using a chemical oven where the heat of exothermic reaction of combustion synthesis of Ti-A1-4B composites was used as the heat source. Monodisperse and spherical SiC fine particles were synthesized under microgravity, whereas aggregates of SiC fine particles were synthesized under 1 G gravity. The SiC particles synthesized under microgravity (150-200 nm) were bigger in size and narrower in size distribution than those under 1 G gravity (100-150 nm).


Author(s):  
Qiao Luo ◽  
Xiaobing Zhang

Purpose – In engineering applications, gas-solid two-phase reaction flow with multi-moving boundaries is a common phenomenon. The launch process of multiple projectiles is a typical example. The flow of adjacent powder chambers is coupled by projectile’s motion. The purpose of this paper is to study this flow by numerical simulation. Design/methodology/approach – A one-dimensional two-phase reaction flow model and MacCormack difference scheme are implemented in a computational code, and the code is used to simulate the launch process of a system of multiple projectiles. For different launching rates and loading conditions, the simulated results of the launch process of three projectiles are obtained and discussed. Findings – At low launching rates, projectiles fired earlier in the series have little effect on the launch processes of projectiles fired later. However, at higher launching rates, the projectiles fired first have a great influence on the launch processes of projectiles fired later. As the launching rate increases, the maximum breech pressure for the later projectiles increases. Although the muzzle velocities increase initially, they reach a maximum at some launching rate, and then decrease rapidly. The muzzle velocities and maximum breech pressures of the three projectiles have an approximate linear relationship with the charge weight, propellant web size and chamber volume. Originality/value – This paper presents a prediction tool to understand the physical phenomenon of the gas-solid two-phase reaction flow with multi-moving boundaries, and can be used as a research tool for future interior ballistics studies of launch system of multiple projectiles.


2017 ◽  
Vol 19 (20) ◽  
pp. 4804-4810 ◽  
Author(s):  
S. H. Shinde ◽  
C. V. Rode

A new and effective unique two-phase reaction system for the high yield production of tri(furyl)methane from furfural and furan.


2021 ◽  
Vol 18 (1) ◽  
pp. 52-59
Author(s):  
A.I. Taleeva ◽  
◽  
I.T. Madumarova ◽  
N.V. Zvyagina ◽  
◽  
...  

The dynamic development of the modern world requires the processing and development of a large enough amount of information in a short period of time, which leads to a violation of the psychophysiological and psycho-emotional balance of the person. Violation of the psycho-emotional state leads to the development of increased anxiety. Students need to learn a lot of information in a very short time. The time limit affects students as a stress factor, leads to increased stress and therefore negatively affects the quality of work and in general on the whole body. The aim of the study is to determine the success of cognitive tasks by students of the Northern (Arctic) Federal University with different levels of anxiety in different time conditions. The study used a psychophysiological testing device to determine the level of situational and personal anxiety, to assess the psycho-emotional state used the technique of simple visual-motor reaction, to determine the success of the cognitive task were presented words with one missing letter.


Author(s):  
Yefei Liu ◽  
Yang Liu ◽  
Xingtuan Yang ◽  
Liqiang Pan

Series of experiments are conducted in a single microchannel, where subcooled water flows upward inside a transparent and vertical microchannel. The cross section of the channel is rectangle with the hydraulic diameter of 2.8mm and the aspect ratio of 20. The working fluid is 3–15K subcooled and surface heat flux on the channel is between 0–3.64 kW/m2, among which two-phase instability at low vapor quantity may occur. By using a novel transparent heating technique and a high-speed camera, visualization results are obtained. The parameters are acquired with a National Instruments Data Acquisition card. In the experiments, long-period oscillation and short-period oscillation are observed as the primary types of instability in a microchannel. Instability characteristics represented from signals correspond well with the flow pattern. Moreover, effects of several parameters are investigated. The results indicate that the oscillating period generally increases with the heat flux density and decreases with inlet subcooling, while the effects of inlet resistance are more complex.


2019 ◽  
Vol 34 (S1) ◽  
pp. S8-S13
Author(s):  
T. Konya ◽  
Y. Shiramata ◽  
T. Nakamura

Structural variation of LiMn1.5Ni0.5O4 spinel cathode during the Li+ extraction/insertion reaction was studied using operando X-ray diffraction. It was found that the reaction in the voltage range from 3.5 to 4.9 V consisted of two consecutive two-phase reactions, where three spinel phases of LiMn1.5Ni0.5O4, Li0.5Mn1.5Ni0.5O4 and Mn1.5Ni0.5O4 were identified and the lattice volume change in the whole reaction was evaluated as 6%. The reactions were symmetric and reversible under low-current conditions, but some asymmetries were detected during high current operation. Furthermore, a two-phase reaction between cubic and tetragonal phases was observed in the low-voltage reaction at 2.1–3.5 V, where the lattice volume change was approximately 4.9%. The rate-determining step was discussed based on these operando results.


2014 ◽  
Vol 11 (97) ◽  
pp. 20140325 ◽  
Author(s):  
Stuart T. Johnston ◽  
Matthew J. Simpson ◽  
D. L. Sean McElwain

Moving cell fronts are an essential feature of wound healing, development and disease. The rate at which a cell front moves is driven, in part, by the cell motility, quantified in terms of the cell diffusivity D , and the cell proliferation rate λ . Scratch assays are a commonly reported procedure used to investigate the motion of cell fronts where an initial cell monolayer is scratched, and the motion of the front is monitored over a short period of time, often less than 24 h. The simplest way of quantifying a scratch assay is to monitor the progression of the leading edge. Use of leading edge data is very convenient because, unlike other methods, it is non-destructive and does not require labelling, tracking or counting individual cells among the population. In this work, we study short-time leading edge data in a scratch assay using a discrete mathematical model and automated image analysis with the aim of investigating whether such data allow us to reliably identify D and λ . Using a naive calibration approach where we simply scan the relevant region of the ( D , λ ) parameter space, we show that there are many choices of D and λ for which our model produces indistinguishable short-time leading edge data. Therefore, without due care, it is impossible to estimate D and λ from this kind of data. To address this, we present a modified approach accounting for the fact that cell motility occurs over a much shorter time scale than proliferation. Using this information, we divide the duration of the experiment into two periods, and we estimate D using data from the first period, whereas we estimate λ using data from the second period. We confirm the accuracy of our approach using in silico data and a new set of in vitro data, which shows that our method recovers estimates of D and λ that are consistent with previously reported values except that that our approach is fast, inexpensive, non-destructive and avoids the need for cell labelling and cell counting.


1971 ◽  
Vol 43 ◽  
pp. 675-695 ◽  
Author(s):  
A. B. Severny

In an attempt to summarize the present knowledge on the general magnetic field (gmf) of the Sun we pointed out the fine structure and the statistical nature of the gmf as one of its most important properties. The dipole-like behaviour of the mean polar field strengths is combined sometimes (since 1964) with a bias of the S-polarity flux for both poles. Highly uneven distribution of gmf with latitude and longitude, the disappearance of gmf at the South pole for months, and short period, almost synchronous at both poles, variations in the sign of gmf are pointed out. The fluctuations with time of the mean magnetic field of the Sun seen as a star (as well as mf at different latitudes) shows periodicity connected with the rotation of the Sun and very close agreement with the fluctuations of the interplanetary field (sector structure). The effect of faster rotation of N-polarities as compared with S-polarities as well as the bias of mean solar as well as interplanetary S-polarity fields are also pointed out. The possibility of short time-scale (hours) intrinsic changes in the local pattern of gmf is demonstrated.


Author(s):  
Dieter Mewes ◽  
Dirk Schmitz

Pressurized chemical reactors or storage vessels are often partly filled with liquid mixtures of reacting components. In case of an unexpected and uncontrolled exothermic reaction the temperature might increase. By this the pressure follows and would exceed a critical maximum value if there would be no mechanism to decrease the pressure and the temperature in a very short period of time. A sudden venting by the opening of a safety valve or a rupture disc causes a rapid vaporization of the reacting liquid mixture. A two-phase flow will pass the ventline. Since two-phase gas-liquid flows cause high pressure losses and give rise to limited mass flows leaving the reactor, single-phase gas flows are preferred. This is emphasized by a periodic venting mechanism of the pressurized vessel. Each time the two-phase flow from the bubbling-up liquid inside the vessel reaches a certain cross-section close the entrance of the ventline. The outlet-valve is closed. Inside the vessel the increasing pressure stops the two-phase flow and only single phase flow is leaving the vessel. The two-phase bubbly flow inside the vessel is detected by a tomographic measurement device during the venting process. Experimental results for local and time dependant phase void fractions as well as pressures are compared with those obtained by numerical calculations of the instationary bubble swarm behavior inside the vessel.


Sign in / Sign up

Export Citation Format

Share Document