scholarly journals Growth factor requirements of childhood acute leukemia: establishment of GM-CSF-dependent cell lines

Blood ◽  
1987 ◽  
Vol 70 (1) ◽  
pp. 192-199 ◽  
Author(s):  
B Lange ◽  
M Valtieri ◽  
D Santoli ◽  
D Caracciolo ◽  
F Mavilio ◽  
...  

Eight permanent cell lines were established from cells of 50 consecutive patients with childhood acute leukemia. Three cell lines required growth factor-containing conditioned media. Analysis using blocking antisera and recombinant granulocytic macrophage (GM) colony- stimulating factor (CSF) identified GM-CSF as a growth factor required to establish the latter three cell lines and necessary for their continuous proliferation in chemically defined medium. Two of the GM- CSF-dependent cell lines were derived from patients with undifferentiated T- and a biphenotypic B-myelomonocytic leukemia, which suggests that GM-CSF might maintain proliferation of leukemias originating from immature progenitor cells. Cytogenetic analysis indicated that all established leukemic cell lines were aneuploid, with six lines containing chromosomal alterations related to those observed in the leukemic cells of the patient. Two patients did not have an abnormal clone identified in the marrow but did yield an aneuploid cell line. These studies indicate that GM-CSF-dependent leukemic cell lines can be established in a fraction of childhood leukemia. These cell lines lend themselves to studies aimed at the evaluation in vitro of the role of growth factors in controlling proliferation and differentiation of leukemic cells.

Blood ◽  
1987 ◽  
Vol 70 (1) ◽  
pp. 192-199 ◽  
Author(s):  
B Lange ◽  
M Valtieri ◽  
D Santoli ◽  
D Caracciolo ◽  
F Mavilio ◽  
...  

Abstract Eight permanent cell lines were established from cells of 50 consecutive patients with childhood acute leukemia. Three cell lines required growth factor-containing conditioned media. Analysis using blocking antisera and recombinant granulocytic macrophage (GM) colony- stimulating factor (CSF) identified GM-CSF as a growth factor required to establish the latter three cell lines and necessary for their continuous proliferation in chemically defined medium. Two of the GM- CSF-dependent cell lines were derived from patients with undifferentiated T- and a biphenotypic B-myelomonocytic leukemia, which suggests that GM-CSF might maintain proliferation of leukemias originating from immature progenitor cells. Cytogenetic analysis indicated that all established leukemic cell lines were aneuploid, with six lines containing chromosomal alterations related to those observed in the leukemic cells of the patient. Two patients did not have an abnormal clone identified in the marrow but did yield an aneuploid cell line. These studies indicate that GM-CSF-dependent leukemic cell lines can be established in a fraction of childhood leukemia. These cell lines lend themselves to studies aimed at the evaluation in vitro of the role of growth factors in controlling proliferation and differentiation of leukemic cells.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 192
Author(s):  
Siska Van Belle ◽  
Sara El Ashkar ◽  
Kateřina Čermáková ◽  
Filip Matthijssens ◽  
Steven Goossens ◽  
...  

HDGF-related protein 2 (HRP-2) is a member of the Hepatoma-Derived Growth Factor-related protein family that harbors the structured PWWP and Integrase Binding Domain, known to associate with methylated histone tails or cellular and viral proteins, respectively. Interestingly, HRP-2 is a paralog of Lens Epithelium Derived Growth Factor p75 (LEDGF/p75), which is essential for MLL-rearranged (MLL-r) leukemia but dispensable for hematopoiesis. Sequel to these findings, we investigated the role of HRP-2 in hematopoiesis and MLL-r leukemia. Protein interactions were investigated by co-immunoprecipitation and validated using recombinant proteins in NMR. A systemic knockout mouse model was used to study normal hematopoiesis and MLL-ENL transformation upon the different HRP-2 genotypes. The role of HRP-2 in MLL-r and other leukemic, human cell lines was evaluated by lentiviral-mediated miRNA targeting HRP-2. We demonstrate that MLL and HRP-2 interact through a conserved interface, although this interaction proved less dependent on menin than the MLL-LEDGF/p75 interaction. The systemic HRP-2 knockout mice only revealed an increase in neutrophils in the peripheral blood, whereas the depletion of HRP-2 in leukemic cell lines and transformed primary murine cells resulted in reduced colony formation independently of MLL-rearrangements. In contrast, primary murine HRP-2 knockout cells were efficiently transformed by the MLL-ENL fusion, indicating that HRP-2, unlike LEDGF/p75, is dispensable for the transformation of MLL-ENL leukemogenesis but important for leukemic cell survival.


Blood ◽  
1993 ◽  
Vol 82 (4) ◽  
pp. 1080-1085 ◽  
Author(s):  
CS Chen ◽  
JM Hilden ◽  
J Frestedt ◽  
PH Domer ◽  
R Moore ◽  
...  

The chromosomal translocation, t(4;11)(q21;q23), is the most common type of 11q23 chromosomal abnormality, being highly prevalent in infant acute leukemias and associated with a poor prognosis. The t(4;11) results in the fusion of an 11q23 gene (MLL, HRX, Htrx-1, or ALL-1) and a 4q21 gene (AF-4 or FEL). To further evaluate the 4q21 gene and its role in t(4;11) acute leukemia, we have cloned a 38-kb genomic region and mapped exons of the AF-4 gene. The 4q21 breakpoints in 19 cases of t(4;11) acute leukemia were analyzed by Southern analysis and pulsed- field gels. Seventeen of the 19 cases had breakpoints on chromosome 4q21 that were scattered in this 38 kb region. Expression of the AF-4 gene was studied in a total of 28 various nonhematopoietic, hematopoietic, and t(4;11) leukemic cell lines. The AF-4 gene was expressed in all cell lines as a major and a minor transcript. In addition to the normal transcripts, two fusion transcripts from the derivative 11 and derivative 4 chromosomes were identified in all t(4;11) cell lines except B1, which had only the der(11) transcript. These findings suggest that the breakpoints on 4q21 cluster over a broader area than do the breakpoints in the 11q23 gene, and that der(11) encodes the fusion RNA found consistently in leukemia cells.


1965 ◽  
Vol 58 (11P2) ◽  
pp. 988-990 ◽  
Author(s):  
C Gordon Zubrod

In the United States, the Acute Leukemia Task Force has been studying ways to achieve chemical control over the acute leukemias. It was found that L1210 mouse leukemia is an excellent predictive model for childhood acute leukemia. Examination of the kinetics of cell generation led to the conclusions that a single cell could multiply to a lethal number of cells in a relatively short time, and that therapy must destroy every cell. Extension of these hypotheses to childhood leukemia has permitted estimates of generation time of human leukemic cells; the size of the leukemic cell population at clinical relapse and the fractional destruction of cells by individual drugs. By the use of combinations of antileukemic drugs complete cell destruction has been approached in a few patients with early leukemia.


Blood ◽  
1995 ◽  
Vol 85 (5) ◽  
pp. 1237-1245 ◽  
Author(s):  
G Manfioletti ◽  
V Gattei ◽  
E Buratti ◽  
A Rustighi ◽  
A De Iuliis ◽  
...  

Proline-rich homeobox (Prh) is a novel human homeobox-containing gene recently isolated from the CD34+ cell line KG-1A, and whose expression appears mainly restricted to hematopoietic tissues. To define the pattern of Prh expression within the human hematopoietic system, we have analyzed its constitutive expression in purified cells obtained from normal hematopoietic tissues, its levels of transcription in a number of leukemia/lymphoma cell lines representing different lineages and stages of hematolymphopoietic differentiation, and its regulation during in vitro maturation of human leukemic cell lines. Prh transcripts were not detected in leukemic cells of T-lymphoid lineage, irrespective of their maturation stage, and in resting or activated normal T cells from peripheral blood and lymphoid tissues. In contrast, high levels of Prh expression were shown in cells representing early stages of B lymphoid maturation, being maintained up to the level of circulating and tissue mature B cells. Terminal B-cell differentiation appeared to be conversely associated with the deactivation of the gene, since preplasmacytic and plasmocytoma cell lines were found not to express Prh mRNA. Prh transcripts were also shown in human cell lines of early myelomonocytic, erythromegakaryocytic, and preosteoclast phenotypes. Prh expression was lost upon in vitro differentiation of leukemic cell lines into mature monocyte-macrophages and megakaryocytes, whereas it was maintained or upregulated after induction of maturation to granulocytes and osteoclasts. Accordingly, circulating normal monocytes did not display Prh mRNA, which was conversely detected at high levels in purified normal granulocytes. Our data, which show that the acquisition of the differentiated phenotype is associated to Prh downregulation in certain hematopoietic cells but not in others, also suggest that a dysregulated expression of this gene might contribute to the process of leukemogenesis within specific cell lineages.


Blood ◽  
2000 ◽  
Vol 95 (2) ◽  
pp. 461-469 ◽  
Author(s):  
Farzana Sayani ◽  
Felix A. Montero-Julian ◽  
Valerie Ranchin ◽  
Jay M. Prevost ◽  
Sophie Flavetta ◽  
...  

On the basis of the finding of alternatively spliced mRNAs, the -subunit of the receptor for GM-CSF is thought to exist in both a membrane spanning (tmGMR) and a soluble form (solGMR). However, only limited data has been available to support that the solGMR protein product exists in vivo. We hypothesized that hematopoietic cells bearing tmGMR would have the potential to also produce solGMR. To test this hypothesis we examined media conditioned by candidate cells using functional, biochemical, and immunologic means. Three human leukemic cell lines that express tmGMR (HL60, U937, THP1) were shown to secrete GM-CSF binding activity and a solGMR-specific band by Western blot, whereas a tmGMR-negative cell line (K562) did not. By the same analyses, leukapheresis products collected for autologous and allogeneic stem cell transplants and media conditioned by freshly isolated human neutrophils also contained solGMR. The solGMR protein in vivo displayed the same dissociation constant (Kd = 2-5 nmol) as that of recombinant solGMR. A human solGMR ELISA was developed that confirmed the presence of solGMR in supernatant conditioned by the tmGMR-positive leukemic cell lines, hematopoietic progenitor cells, and neutrophils. Furthermore, the ELISA demonstrated a steady state level of solGMR in normal human plasma (36 ± 17 pmol) and provided data suggesting that plasma solGMR levels can be elevated in acute myeloid leukemias.


Blood ◽  
1996 ◽  
Vol 87 (9) ◽  
pp. 3783-3794 ◽  
Author(s):  
I Parolini ◽  
M Sargiacomo ◽  
MP Lisanti ◽  
C Peschle

Src-family nonreceptor protein tyrosine kinases (NRPTK) are associated with cell surface receptors in large detergent-resistant complexes: in epithelial cells, yes is selectively located in vesicle structures containing caveolin (“caveolae”). These formations are typically also endowed with glycophosphatidylinositol (GPI)-anchored proteins. In the present study, we observed lck, lyn, src, hck, CD4, CD45, G proteins, and CD55 (decay-accelerating factor) expression in the buoyant low- density Triton-insoluble (LDTI) fraction of selected leukemic cell lines and granulocytes. We provide a detailed analysis of the two most highly expressed NRPTK, p53/p56lyn and p56lck, which are involved in the transduction of signals for proliferation and differentiation of monocytes/B lymphocytes and T lymphocytes, respectively. We show that lyn is selectively recovered in LDTI complexes isolated from human leukemic cell lines (promyelocytic [HL-60], erythroid [K562] and B- lymphoid [697]) and from normal human granulocytes, and that lck is recovered from LDTI fractions of leukemic T- and B-lymphoid cell lines (CEM, 697). In LDTI fractions of leukemic cells, lck and lyn are enriched 100-fold as compared with the total cell lysates. Analysis of these fractions by electron microscopy shows the presence of 70- to 200- nm vesicles: lyn and lck are homogenously distributed in the vesicles, as revealed by an immunogold labeling procedure. These novel results propose a role for these vesicles in signal transduction mechanisms of normal and neoplastic hematopoietic cells. In support of this hypothesis, we further observed that molecules participating in B- and T-cell receptor activation cofractionate in the LDTI fractions, CD45/lyn (B cells) and CD45/lck/CD4 (T cells).


Blood ◽  
1985 ◽  
Vol 65 (1) ◽  
pp. 100-106 ◽  
Author(s):  
HN Steinberg ◽  
AS Tsiftsoglou ◽  
SH Robinson

Abstract The human leukemic cell lines K562 and HL-60 were cocultured with normal bone marrow (BM) cells. Coculture with 10(4) K562 or HL-60 cells results in 50% inhibition of normal CFU-E and BFU-E colony formation. However, when the same number of K562 and HL-60 cells is first treated for two to five days with agents that induce their differentiation, a gradual loss in their capacity to inhibit CFU-E and BFU-E colony formation is observed. The inhibitory material in K562 cells is soluble and present in conditioned medium from cultures of these cells. The degree to which leukemic cell suppression of CFU-E and BFU-E growth is reversed is correlated with the time of exposure to the inducing agent. Suppression is no longer evident after five days of prior treatment with inducers. In fact, up to a 90% stimulation of CFU-E growth is observed in cocultures with K562 cells that have been pretreated with 30 to 70 mumol/L hemin for five days. K562 cells treated with concentrations of hemin as low as 30 mumol/L demonstrate increased hemoglobin synthesis and grow normally, but no longer have an inhibitory effect on CFU-E growth. Hence, reversal of normal BM growth inhibition must be caused by the more differentiated state of the K562 cells and not by a decrease in the number of these cells with treatment. Thus, induction of differentiation in cultured leukemic cells not only alters the malignant cell phenotype but also permits improved growth of accompanying normal marrow progenitor cells. Both are desired effects of chemotherapy.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4493-4493 ◽  
Author(s):  
Yoshihiro Hatta ◽  
Minoru Saiki ◽  
Yuko Enomoto ◽  
Shin Aizawa ◽  
Umihiko Sawada ◽  
...  

Abstract Troglitazone and pioglitazone are one of thiazolidinediones that are high affinity ligand for the nuclear receptor called peroxisome proliferator-activated receptor gamma (PPAR-γ). Troglitazone is a potent inhibitor of clonogenic growth of acute myeloid leukemia cells when combined with a retinoid. However, the effect of pioglitazone to neoplastic cells and normal hematopoietic cells has not been studied yet. Adult T-cell leukemia (ATL), prevalent in western Japan, is a highly aggressive malignancy of mature T lymphocyte. Therefore, we studied antitumor effect of pioglitazone against leukemic cells including ATL as well as normal hematopoietic cells. With 300 μM of pioglitazone, colony formation of ATL cell lines (MT1, MT2, F6T, OKM3T, and Su9T01) was completely inhibited. Colony formation of HUT102, another ATL cell line, was 12 % compared to untreated control. Clonogenic cells of other leukemic cell lines (K562, HL60, U937, HEL, CEM, and NALM1) was also inhibited to 0–30% of control. Colony formation of primary leukemic cells from 5 AML patients was decreased to 15 %. However, normal hematopoietic cells were weakly inhibited with 300 μM pioglitazone; 77 % of CFU-GM, 70 % of CFU-E, and 33 % of BFU-E survived. Cell cycle analysis showed that pioglitazone decreased the ratio of G2/M phase in HL60 cells, suggesting the inhibition of cell division. By Western blotting, PPAR-γ protein level was similar in all leukemic cells and normal bone marrow mononuclear cells. Taken together, pioglitazone effectively eliminate leukemic cells and could be used as an antitumor agent in vivo.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2761-2761
Author(s):  
Leslie R. Ellis ◽  
Loic Vincent ◽  
Sergey Shmelkov ◽  
Andrea Hooper ◽  
Scott Avecilla ◽  
...  

Abstract It has already been established that subsets of leukemic cells express receptors for pro-angiogenic factors, such as vascular endothelial growth factor receptor-2 (VEGFR-2). Further studies have shown that these same leukemic cells also produce the ligand for these VEGF receptors, VEGF-A. This autocrine loop supports the invasion and proliferation of these particular leukemic cells. The VEGFR-2 signaling pathway is further dependent upon the co-activation of other pro-angiogenic factors, such as vascular endothelial (VE)-cadherin. VE-cadherin is an endothelial cell-specific transmembrane cellular adhesion protein that when bound results in the dephosphorylation of VEGFR-2 and contributes to neo-vessel formation. Recent studies have suggested that VE-cadherin may be expressed by a unique subset of hematopoietic cells, raising the possibility that leukemic cells may express VE-cadherin as well. We therefore sought to identify the expression of VE-cadherin on leukemic cell lines and primary samples, and further determine its role in the interaction with VE-cadherin-positive endothelial cells. Leukemic cell lines and primary leukemias were screened for the presence of VE-cadherin by both RT-PCR and Western blot analysis. Primary leukemic samples, as well as established cell lines for human erythroblastic leukemia (HEL) and acute myelogenous leukemia (KG-1a) were found to express VE-cadherin. VE-cadherin expression was further confirmed by flow cytometry and immunocytochemistry, which demonstrated that approximately 15% of the total population was VE-cadherin-positive. Proliferation and migration assays utilizing neutralizing monoclonal antibodies to VE-cadherin were performed with no obvious effects. However, immunofluorescent staining of a co-culture performed with the above leukemic cells grown on a layer of human umbilical vein endothelial cells (HUVECs) demonstrated that the leukemic cells and HUVECs interact via VE-cadherin. Furthermore, when these leukemic cells were injected into NOD-SCID mice subcutaneously, the VE-cadherin-positive cells localized around the vessels present within the leukemic chloroma. These data set forth the concept that a subset of leukemic cells expresses the protein VE-cadherin and that VE-cadherin is involved in the cell-to-cell interaction between a subset of leukemic cells and vascular endothelial cells. Heterotypic VE-cadherin interaction between leukemic cells and neo-vessels may increase the survival of leukemic cells and contribute to the generation of minimal residual disease. Therefore, inhibition of VEGFR-2 in conjunction with VE-cadherin may provide a novel strategy to eradicate minimal residual disease.


Sign in / Sign up

Export Citation Format

Share Document