scholarly journals Synergism between erythropoietin and interleukin-3 in the induction of hematopoietic stem cell proliferation and erythroid burst colony formation

Blood ◽  
1988 ◽  
Vol 72 (3) ◽  
pp. 944-951 ◽  
Author(s):  
G Migliaccio ◽  
AR Migliaccio ◽  
JW Visser

Abstract The influence of recombinant erythropoietin (Ep) and interleukin-3 (IL- 3) on the proliferation and differentiation of murine hematopoietic stem and progenitor cells was investigated in serum-deprived cultures. The differentiation of progenitor cells, purified by collecting blast cell colonies from spleen cell cultures of 5-fluorouracil-treated mice, was evaluated by scoring the number and type of colonies appearing after eight days in semisolid culture. IL-3 induced the formation of both erythroid and granulocyte-macrophage colonies in a concentration- dependent fashion, the plateau being reached at 300 U/mL. However, concentrations of IL-3 alone that had little or no effect (less than or equal to 10 U/mL) induced maximal numbers of erythroid bursts in the presence of Ep (1.5 IU/mL). In the presence of Ep alone, no colonies were seen. Proliferation of quiescent hematopoietic stem cells, purified by cell sorting and evaluated by spleen colony assay (CFU-S), was investigated by measuring the total cell number and CFU-S content and the DNA histogram at 20 and 48 hours of liquid culture. Almost no cells or CFU-S survived 20 hours of incubation without the addition of IL-3. The presence of either IL-3 (400 U/mL) or the combination of EP and IL-3 (10 U/mL), supported the maintenance of nearly 40% of sorted CFU-S for 48 hours. Approximately 10% of these cells were in the S phase of the cell cycle at 20 hours and an increase in the total cell number per culture, but not in the CFU-S content, was detected at 48 hours. These data indicate that IL-3 exerts a differentiative and proliferative effect on early stem and progenitor cells, which is concentration dependent. At IL-3 concentrations, which had little or no activity alone, Ep acted synergistically to induce both proliferation of stem cells and differentiation of erythroid progenitors.

Blood ◽  
1988 ◽  
Vol 72 (3) ◽  
pp. 944-951 ◽  
Author(s):  
G Migliaccio ◽  
AR Migliaccio ◽  
JW Visser

The influence of recombinant erythropoietin (Ep) and interleukin-3 (IL- 3) on the proliferation and differentiation of murine hematopoietic stem and progenitor cells was investigated in serum-deprived cultures. The differentiation of progenitor cells, purified by collecting blast cell colonies from spleen cell cultures of 5-fluorouracil-treated mice, was evaluated by scoring the number and type of colonies appearing after eight days in semisolid culture. IL-3 induced the formation of both erythroid and granulocyte-macrophage colonies in a concentration- dependent fashion, the plateau being reached at 300 U/mL. However, concentrations of IL-3 alone that had little or no effect (less than or equal to 10 U/mL) induced maximal numbers of erythroid bursts in the presence of Ep (1.5 IU/mL). In the presence of Ep alone, no colonies were seen. Proliferation of quiescent hematopoietic stem cells, purified by cell sorting and evaluated by spleen colony assay (CFU-S), was investigated by measuring the total cell number and CFU-S content and the DNA histogram at 20 and 48 hours of liquid culture. Almost no cells or CFU-S survived 20 hours of incubation without the addition of IL-3. The presence of either IL-3 (400 U/mL) or the combination of EP and IL-3 (10 U/mL), supported the maintenance of nearly 40% of sorted CFU-S for 48 hours. Approximately 10% of these cells were in the S phase of the cell cycle at 20 hours and an increase in the total cell number per culture, but not in the CFU-S content, was detected at 48 hours. These data indicate that IL-3 exerts a differentiative and proliferative effect on early stem and progenitor cells, which is concentration dependent. At IL-3 concentrations, which had little or no activity alone, Ep acted synergistically to induce both proliferation of stem cells and differentiation of erythroid progenitors.


Blood ◽  
2002 ◽  
Vol 100 (7) ◽  
pp. 2449-2456 ◽  
Author(s):  
Mondira Kundu ◽  
Amy Chen ◽  
Stacie Anderson ◽  
Martha Kirby ◽  
LiPing Xu ◽  
...  

Core-binding factor β (CBFβ) and CBFα2 form a heterodimeric transcription factor that plays an important role in hematopoiesis. The genes encoding either CBFβ or CBFα2 are involved in chromosomal rearrangements in more than 30% of cases of acute myeloid leukemia (AML), suggesting that CBFβ and CBFα2 play important roles in leukemogenesis. Inv(16)(p13;q22) is found in almost all cases of AML M4Eo and results in the fusion ofCBFB with MYH11, the gene encoding smooth muscle myosin heavy chain. Mouse embryos heterozygous for aCbfb-MYH11 knock-in gene lack definitive hematopoiesis, a phenotype shared by Cbfb−/−embryos. In this study we generated a Cbfb-GFP knock-in mouse model to characterize the normal expression pattern of Cbfβ in hematopoietic cells. In midgestation embryos, Cbfβ was expressed in populations enriched for hematopoietic stem cells and progenitors. This population of stem cells and progenitors was not present in mouse embryos heterozygous for the Cbfb-MYH11 knock-in gene. Together, these data suggest that Cbfb-MYH11 blocks embryonic hematopoiesis at the stem-progenitor cell level and thatCbfb is essential for the generation of hematopoietic stem and progenitor cells. In adult mice, Cbfβ was expressed in stem and progenitor cells, as well as mature myeloid and lymphoid cells. Although it was expressed in erythroid progenitors, Cbfβ was not expressed during the terminal stages of erythropoiesis. Our data indicate that Cbfb is required for myeloid and lymphoid differentiation; but does not play a critical role in erythroid differentiation.


2019 ◽  
Author(s):  
Silvana Di Giandomenico ◽  
Pouneh Kermani ◽  
Nicole Molle ◽  
Maria Mia Yabut ◽  
Ghaith Abu Zeinah ◽  
...  

SummaryErythropoiesis is a multiweek program coupling massive proliferation with progressive cellular differentiation ultimately enabling a limited number of hematopoietic stem cells (HSCs) to yield millions of erythrocytes per second1. Erythropoietin (Epo) is essential for red blood cell (RBC) production but this cytokine acts well after irreversible commitment of hematopoietic progenitor cells (HPCs) to an erythroid fate. It is not known if terminal erythropoiesis is tethered to the pool of available immature hematopoietic stem and progenitor cells (HSPCs). We now report that megakaryocyte-derived TGFβ1 compartmentalizes hematopoiesis by coupling HPC numbers to production of mature erythrocytes. Genetic deletion of TGFβ1 specifically in megakaryocytes (TGFβ1ΔMk/ΔMk) increased functional HSPCs including committed erythroid progenitors, yet total bone marrow and spleen cellularity and peripheral blood cell counts were entirely normal. Instead, excess erythroid precursors underwent apoptosis, predominantly those erythroblasts expressing the Epo receptor (Epor) but not Kit. Despite there being no deficiency of plasma Epo inTGFβ1ΔMk/ΔMkmice, exogenous Epo rescued survival of excess erythroid precursors and triggered exuberant erythropoiesis. In contrast, exogenous TGFβ1 caused anemia and failed to rescue erythroid apoptosis despite its ability to restore downstream TGFβ-mediated Smad2/3 phosphorylation in HSPCs. Thus, megakaryocytic TGFβ1 regulates the size of the pool of immature HSPCs and in so doing, improves the efficiency of erythropoiesis by governing the feed of lineage-committed erythroid progenitors whose fate is decided by extramedullary renal Epo-producing cells sensing the need for new RBCs. Independent manipulation of distinct immature Epo-unresponsive HSPCs within the hematopoietic compartments offers a new strategy to overcome chronic anemias or possibly other cytopenias.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3644-3644
Author(s):  
Feng Qi ◽  
Che K. Lim ◽  
Li Sun ◽  
William Y.K. Hwang

Abstract Human umbilical cord blood (CB) represents a unique source of transplantable hematopoietic cells. Unfortunately, when the cell dose is less than optimal, delayed or failed engraftment may result. To overcome this limitation, ex vivo expansion of CB products in an attempt to increase the number of progenitor cells has been evaluated. However, current clinical conditions for ex vivo expansion of CB cells require selection of the CD34+ or CD133+ subset, as unfractionated or mononuclear cells (MNC) do not expand well. Such cell selection processes often result in low CD34+ cell recoveries and suboptimal purities, with a consequent lowering of total overall cell expansion. CD52 is an abundant antigen specifically expressed on lymphocytes, monocytes, eosinophils, thymocytes and macrophages; and there is significant evidence for the lack of CD52 expression on hematopoietic progenitor cells. In our current study, Campath-1H, a humanized anti-CD52 antibody, was added to Ficoll-separated cord blood cells to promote active selection of hematopoietic stem cells and curtailment of excess lymphocyte expansion in ex vivo cultures. Prior to start of the cultures, initial Ficoll separation of cord blood removed most of the granulocytes (CD33+ cells: 2.3%, CD13+ cells: 3.1%) though 90.3% percent of the cells remained CD52 positive. Megakaryocytic (CD41+), erythroid (GlyA+) and CD34+ cell percentages in the starting cultures were 12.8%, 1.8% and 0.4% respectively. Cells were not subjected to CD34 or CD133 column selection prior to ex vivo expansion and Campath-1H was added every 3 days to the expansion culture media (incorporating 50 ng/ml SCF, TPO and Flt-3 ligand in StemSpan SFEM medium). CD52+ cells decreased from 90.3% to 3.1% after treatment with Campath-1H antibody (Ab), maintaining at 64.4% in control cultures. After 2 weeks of culture, CD34 cells expanded 12.56 fold in cultures with Campath-1H added versus 7.10 fold in cultures without Campath. There was a 1.49 fold decrease in total cell number in ex-vivo cultures without Campath-1H added, which was consistent with the current literature on expansion with non-selected cells. With Campath-1H in the culture system, there was a 1.60 fold increase in total cell number, which was 2.39 fold higher than control cultures. Decrease in the lymphoid cell percentage was accompanied by a relative increase in CD33+ (50.2% with Ab vs. 41.9% without Ab) and CD13+ (82% with Ab vs. 61.1% without Ab) myeloid cells, CD41+ megakaryocytes (34.5% with Ab vs 13.0% without Ab) and GlyA+ erythrocytes (9.9% with Ab vs. 4.5% without Ab). The relative expansion of non-lymphocyte populations observed in our cultures system could potentially reduce graft-versus-host disease (GVHD) and promote enhanced engraftment of myeloid, megakaryocytic and erythroid precursors after transplantation. The ability to use a CD34/CD133 column-independent expansion system through Ab-regulated culture with a clinically licensed antibody is also compelling.


Author(s):  
Omika Katoch ◽  
Mrinalini Tiwari ◽  
Namita Kalra ◽  
Paban K. Agrawala

AbstractDiallyl sulphide (DAS), the pungent component of garlic, is known to have several medicinal properties and has recently been shown to have radiomitigative properties. The present study was performed to better understand its mode of action in rendering radiomitigation. Evaluation of the colonogenic ability of hematopoietic progenitor cells (HPCs) on methocult media, proliferation and differentiation of hematopoietic stem cells (HSCs), and transplantation of stem cells were performed. The supporting tissue of HSCs was also evaluated by examining the histology of bone marrow and in vitro colony-forming unit–fibroblast (CFU-F) count. Alterations in the levels of IL-5, IL-6 and COX-2 were studied as a function of radiation or DAS treatment. It was observed that an increase in proliferation and differentiation of hematopoietic stem and progenitor cells occurred by postirradiation DAS administration. It also resulted in increased circulating and bone marrow homing of transplanted stem cells. Enhancement in bone marrow cellularity, CFU-F count, and cytokine IL-5 level were also evident. All those actions of DAS that could possibly add to its radiomitigative potential and can be attributed to its HDAC inhibitory properties, as was observed by the reversal radiation induced increase in histone acetylation.


2019 ◽  
Vol 3 (3) ◽  
pp. 419-431 ◽  
Author(s):  
Fang Dong ◽  
Haitao Bai ◽  
Xiaofang Wang ◽  
Shanshan Zhang ◽  
Zhao Wang ◽  
...  

Abstract The cell of origin, defined as the normal cell in which the transformation event first occurs, is poorly identified in leukemia, despite its importance in understanding of leukemogenesis and improving leukemia therapy. Although hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) were used for leukemia models, whether their self-renewal and differentiation potentials influence the initiation and development of leukemia is largely unknown. In this study, the self-renewal and differentiation potentials in 2 distinct types of HSCs (HSC1 [CD150+CD41−CD34−Lineage−Sca-1+c-Kit+ cells] and HSC2 [CD150−CD41−CD34−Lineage−Sca-1+c-Kit+ cells]) and 3 distinct types of HPCs (HPC1 [CD150+CD41+CD34−Lineage−Sca-1+c-Kit+ cells], HPC2 [CD150+CD41+CD34+Lineage−Sca-1+c-Kit+ cells], and HPC3 [CD150−CD41−CD34+Lineage−Sca-1+c-Kit+ cells]) were isolated from adult mouse bone marrow, and examined by competitive repopulation assay. Then, cells from each population were retrovirally transduced to initiate MLL-AF9 acute myelogenous leukemia (AML) and the intracellular domain of NOTCH-1 T-cell acute lymphoblastic leukemia (T-ALL). AML and T-ALL similarly developed from all HSC and HPC populations, suggesting multiple cellular origins of leukemia. New leukemic stem cells (LSCs) were also identified in these AML and T-ALL models. Notably, switching between immunophenotypical immature and mature LSCs was observed, suggesting that heterogeneous LSCs play a role in the expansion and maintenance of leukemia. Based on this mouse model study, we propose that acute leukemia arises from multiple cells of origin independent of the self-renewal and differentiation potentials in hematopoietic stem and progenitor cells and is amplified by LSC switchover.


2018 ◽  
Vol 19 (7) ◽  
pp. 2122 ◽  
Author(s):  
Geoffrey Brown ◽  
Rhodri Ceredig ◽  
Panagiotis Tsapogas

Evidence from studies of the behaviour of stem and progenitor cells and of the influence of cytokines on their fate determination, has recently led to a revised view of the process by which hematopoietic stem cells and their progeny give rise to the many different types of blood and immune cells. The new scenario abandons the classical view of a rigidly demarcated lineage tree and replaces it with a much more continuum-like view of the spectrum of fate options open to hematopoietic stem cells and their progeny. This is in contrast to previous lineage diagrams, which envisaged stem cells progressing stepwise through a series of fairly-precisely described intermediate progenitors in order to close down alternative developmental options. Instead, stem and progenitor cells retain some capacity to step sideways and adopt alternative, closely related, fates, even after they have “made a lineage choice.” The stem and progenitor cells are more inherently versatile than previously thought and perhaps sensitive to lineage guidance by environmental cues. Here we examine the evidence that supports these views and reconsider the meaning of cell lineages in the context of a continuum model of stem cell fate determination and environmental modulation.


Blood ◽  
1994 ◽  
Vol 83 (10) ◽  
pp. 3041-3051 ◽  
Author(s):  
JA Nolta ◽  
MB Hanley ◽  
DB Kohn

Abstract We have developed a novel cotransplantation system in which gene- transduced human CD34+ progenitor cells are transplanted into immunodeficient (bnx) mice together with primary human bone marrow (BM) stromal cells engineered to produce human interleukin-3 (IL-3). The IL- 3-secreting stroma produced sustained circulating levels of human IL-3 for at least 4 months in the mice. The IL-3-secreting stroma, but not control stroma, supported human hematopoiesis from the cotransplanted human BM CD34+ progenitors for up to 9 months, such that an average of 6% of the hematopoietic cells removed from the mice were of human origin (human CD45+). Human multilineage progenitors were readily detected as colony-forming units from the mouse marrow over this time period. Retroviral-mediated transfer of the neomycin phosphotransferase gene or a human glucocerebrosidase cDNA into the human CD34+ progenitor cells was performed in vitro before cotransplantation. Human multilineage progenitors were recovered from the marrow of the mice 4 to 9 months later and were shown to contain the transduced genes. Mature human blood cells marked by vector DNA circulated in the murine peripheral blood throughout this time period. This xenograft system will be useful in the study of gene transduction of human hematopoietic stem cells, by tracing the development of individually marked BM stem cells into mature blood cells of different lineages.


Blood ◽  
2009 ◽  
Vol 114 (18) ◽  
pp. 3783-3792 ◽  
Author(s):  
Xiaoxia Hu ◽  
Hongmei Shen ◽  
Chen Tian ◽  
Hui Yu ◽  
Guoguang Zheng ◽  
...  

Abstract The predominant outgrowth of malignant cells over their normal counterparts in a given tissue is a shared feature for all types of cancer. However, the impact of a cancer environment on normal tissue stem and progenitor cells has not been thoroughly investigated. We began to address this important issue by studying the kinetics and functions of hematopoietic stem and progenitor cells in mice with Notch1-induced leukemia. Although hematopoiesis was progressively suppressed during leukemia development, the leukemic environment imposed distinct effects on hematopoietic stem and progenitor cells, thereby resulting in different outcomes. The normal hematopoietic stem cells in leukemic mice were kept in a more quiescent state but remained highly functional on transplantation to nonleukemic recipients. In contrast, the normal hematopoietic progenitor cells in leukemic mice demonstrated accelerated proliferation and exhaustion. Subsequent analyses on multiple cell-cycle parameters and known regulators (such as p21, p27, and p18) further support this paradigm. Therefore, our current study provides definitive evidence and plausible underlying mechanisms for hematopoietic disruption but reversible inhibition of normal hematopoietic stem cells in a leukemic environment. It may also have important implications for cancer prevention and treatment in general.


Blood ◽  
2002 ◽  
Vol 99 (1) ◽  
pp. 15-23 ◽  
Author(s):  
James C. Mulloy ◽  
Jörg Cammenga ◽  
Karen L. MacKenzie ◽  
Francisco J. Berguido ◽  
Malcolm A. S. Moore ◽  
...  

The acute myelogenous leukemia–1 (AML1)–ETO fusion protein is generated by the t(8;21), which is found in 40% of AMLs of the French-American-British M2 subtype. AML1-ETO interferes with the function of the AML1 (RUNX1, CBFA2) transcription factor in a dominant-negative fashion and represses transcription by binding its consensus DNA–binding site and via protein-protein interactions with other transcription factors. AML1 activity is critical for the development of definitive hematopoiesis, and haploinsufficiency of AML1 has been linked to a propensity to develop AML. Murine experiments suggest that AML1-ETO expression may not be sufficient for leukemogenesis; however, like the BCR-ABL isoforms, the cellular background in which these fusion proteins are expressed may be critical to the phenotype observed. Retroviral gene transfer was used to examine the effect of AML1-ETO on the in vitro behavior of human hematopoietic stem and progenitor cells. Following transduction of CD34+ cells, stem and progenitor cells were quantified in clonogenic assays, cytokine-driven expansion cultures, and long-term stromal cocultures. Expression of AML1-ETO inhibited colony formation by committed progenitors, but enhanced the growth of stem cells (cobblestone area-forming cells), resulting in a profound survival advantage of transduced over nontransduced cells. AML1-ETO–expressing cells retained progenitor activity and continued to express CD34 throughout the 5-week long-term culture. Thus, AML1-ETO enhances the self-renewal of pluripotent stem cells, the physiological target of many acute myeloid leukemias.


Sign in / Sign up

Export Citation Format

Share Document