scholarly journals Transfer of the ADA gene into human ADA-deficient T lymphocytes reconstitutes specific immune functions

Blood ◽  
1992 ◽  
Vol 80 (5) ◽  
pp. 1120-1124 ◽  
Author(s):  
G Ferrari ◽  
S Rossini ◽  
N Nobili ◽  
D Maggioni ◽  
A Garofalo ◽  
...  

Abstract Peripheral blood lymphocytes obtained from a patient affected by adenosine deaminase (ADA) deficiency and severe combined immunodeficiency were infected with a retroviral vector containing two copies of a human ADA minigene, and injected into bg/nu/xid (BNX) immunodeficient mice. Six to 10 weeks after injection, human T cells were cloned from the spleens of recipient animals and analyzed for proliferative potential, T-cell surface markers, expression of ADA activity, integration of retroviral sequences, T-cell receptor (TCR) beta gene rearrangement, and specificity of antigen recognition. Efficient gene transfer and expression restored proliferative potential in vitro and long-term survival in vivo. All clonable human T lymphocytes obtained from the spleen of recipient animals had high levels of vector-derived ADA enzyme activity and showed predominantly the CD4+ phenotype. Retroviral integrations and TCR-beta gene rearrangements demonstrated the presence of a variety of different clones in the spleens of recipient mice. Furthermore, the combined analyses of vector integration and TCR rearrangement provided evidence that a circulating progenitor cell was transduced by the retroviral vector, giving rise to different and functional TCRs. Evaluation of antigen-specificity demonstrated both alloreactive and foreign antigen specific immune responses. These results suggest that restoration of enzyme activity in human ADA-deficient peripheral blood T cells by retroviral-mediated ADA gene transfer allows in vivo survival and reconstitution of specific immune functions. Therefore, retroviral vector-mediated gene transfer into circulating mononuclear cells could be successful not only in maintaining the metabolic homeostasis, but also for the development of a functional immune repertoire. This is a fundamental prerequisite for the usage of genetically engineered peripheral blood lymphocytes for somatic cell gene therapy of ADA deficiency.

Blood ◽  
1992 ◽  
Vol 80 (5) ◽  
pp. 1120-1124
Author(s):  
G Ferrari ◽  
S Rossini ◽  
N Nobili ◽  
D Maggioni ◽  
A Garofalo ◽  
...  

Peripheral blood lymphocytes obtained from a patient affected by adenosine deaminase (ADA) deficiency and severe combined immunodeficiency were infected with a retroviral vector containing two copies of a human ADA minigene, and injected into bg/nu/xid (BNX) immunodeficient mice. Six to 10 weeks after injection, human T cells were cloned from the spleens of recipient animals and analyzed for proliferative potential, T-cell surface markers, expression of ADA activity, integration of retroviral sequences, T-cell receptor (TCR) beta gene rearrangement, and specificity of antigen recognition. Efficient gene transfer and expression restored proliferative potential in vitro and long-term survival in vivo. All clonable human T lymphocytes obtained from the spleen of recipient animals had high levels of vector-derived ADA enzyme activity and showed predominantly the CD4+ phenotype. Retroviral integrations and TCR-beta gene rearrangements demonstrated the presence of a variety of different clones in the spleens of recipient mice. Furthermore, the combined analyses of vector integration and TCR rearrangement provided evidence that a circulating progenitor cell was transduced by the retroviral vector, giving rise to different and functional TCRs. Evaluation of antigen-specificity demonstrated both alloreactive and foreign antigen specific immune responses. These results suggest that restoration of enzyme activity in human ADA-deficient peripheral blood T cells by retroviral-mediated ADA gene transfer allows in vivo survival and reconstitution of specific immune functions. Therefore, retroviral vector-mediated gene transfer into circulating mononuclear cells could be successful not only in maintaining the metabolic homeostasis, but also for the development of a functional immune repertoire. This is a fundamental prerequisite for the usage of genetically engineered peripheral blood lymphocytes for somatic cell gene therapy of ADA deficiency.


2005 ◽  
Vol 79 (21) ◽  
pp. 13412-13420 ◽  
Author(s):  
Eui-Cheol Shin ◽  
Ulrike Protzer ◽  
Andreas Untergasser ◽  
Stephen M. Feinstone ◽  
Charles M. Rice ◽  
...  

ABSTRACT Gamma interferon (IFN-γ) has been shown to inhibit replication of subgenomic and genomic hepatitis C virus (HCV) RNAs in vitro and to noncytolytically suppress hepatitis B virus (HBV) replication in vivo. IFN-γ is also known for its immunomodulatory effects and as a marker of a successful cellular immune response to HCV. Therapeutic expression of IFN-γ in the liver may therefore facilitate resolution of chronic hepatitis C, an infection that is rarely resolved spontaneously. To analyze immunomodulatory and antiviral effects of liver-specific IFN-γ expression in vivo, we intravenously injected two persistently HCV-infected chimpanzees twice with a recombinant, replication-deficient HBV vector and subsequently with a recombinant adenoviral vector. These vectors expressed human IFN-γ under control of HBV- and liver-specific promoters, respectively. Gene transfer resulted in a transient increase of intrahepatic IFN-γ mRNA, without increase in serum alanine aminotransferase levels. Ex vivo analysis of peripheral blood lymphocytes demonstrated enhanced CD16 expression on T cells and upregulation of the liver-homing marker CXCR3. Moreover, an increased frequency of HCV-specific T cells was detected ex vivo in the peripheral blood and in vitro in liver biopsy-derived, antigen-nonspecifically expanded T-cell lines. None of these immunologic effects were observed in the third chimpanzee injected with an HBV control vector. Despite these immunologic effects of the experimental vector, however, IFN-γ gene transfer did not result in a significant and long-lasting decrease of HCV titers. In conclusion, liver-directed IFN-γ gene delivery resulted in HCV-specific and nonspecific activation of cellular immune responses but did not result in effective control of HCV replication.


1997 ◽  
Vol 45 (11) ◽  
pp. 1533-1545 ◽  
Author(s):  
Tibor Barka ◽  
Hendrika M. van der Noen

A retroviral vector DAP that encodes the human placental alkaline phosphatase (PLAP) and the neomycin-resistant gene was used to transduce the salivary gland-derived cell line A5 in vitro and acinar cells in rat submandibular gland in vivo. Expression of the transduced PLAP gene was established by histochemical staining for heat-resistant AP and by determination of enzyme activity. From the in vitro experiments, we concluded that the salivary gland-derived cell line A5 can be infected by the retroviral vector DAP. In the transduced cells the viral long terminal repeat (LTR) promoter was effective, and the cells expressed heat-stable PLAP which was localized mostly in the plasma membrane and could be released by treatment with bromelain or phosphatidyinositol-specific phospholipase C. A5-DAP cells secreted PLAP into the medium. Clones of A5-DAP cells expressed various levels of the enzyme. The level of enzyme activity in different clones was unrelated to growth rate. Retrograde ductal injection of the viral vector into the duct of the submandibular gland of rats resulted in integration and long-term expression of PLAP gene in acinar cells. Expression of PLAP was seen up to 25 days, the limit of the observation period. To facilitate integration of the viral DNA, cell division of acinar cells was induced by administration of the β-adrenergic agonist isoproterenol before administration of the virus. PLAP was secreted into submandibular saliva. The data support the notion that salivary glands are suitable targets for gene transfer in vivo by a retroviral vector. (J Histochem Cytochem 45:1533–1545, 1997)


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 262-262
Author(s):  
Olivier Humbert ◽  
Christopher R Burtner ◽  
Patricia O'Donnell ◽  
Daniel R Humphrys ◽  
Nicholas Hubbard ◽  
...  

Abstract In vivo gene therapy has several benefits over ex vivo hematopoietic stem cell gene therapy, including the correction of progenitor cells in their native environments, the portability of the treatment to the patient, and the ability to administer serial doses of therapeutic vector. Foamy viruses (FV) are ideal vectors for in vivo gene therapy because they are non-pathogenic in humans, they exhibit increased serum stability and they integrate into host genomes with a favorable integration pattern. We recently demonstrated that intravenous injection of a FV vector expressing the human common gamma chain (γC) under the constitutively active short elongation factor 1α (EF1α) promoter is sufficient to drive development of functional CD3+ lymphocytes in canine X-SCID (Burtner CR et al. Intravenous injection of a foamy virus vector to correct canine SCID-X1. Blood. 2014;123(23):3578-84). However, retroviral integration site analysis in that study indicated that T cell reconstitution occurred through the correction of a limited number of progenitors, possibly due to sub-therapeutic expression levels from the EF1α promoter. To address this issue, we are evaluating multiple parameters of vector design for in vivo gene therapy that include different promoters and different fluorophores. We performed a head-to-head comparison of two promoters, our previously used EF1α promoter and the human phosphoglycerate kinase (PGK) promoter, by simultaneously injecting three X-SCID pups with equal titers of two therapeutic, human γC-encoding FV vectors. These vectors expressed the fluorophores GFP or mCherry to allow for tracking of transduced cells. Each dog received between 3 and 4 x 108 infectious units of each FV vector. In all treated dogs, lymphocyte marking in the PGK arm reached 50% between day 60 and day 110 post-injection and continued to expand over time, while the EF1α arm peaked at day 42 and never expanded above 10% (Fig 1A). Interestingly, the expansion of T lymphocytes from gene-modified cells expressing γC under the PGK promoter appeared to preclude further development of T cells by the EF1α arm, suggesting competition within the expanding T cell niche. The development of total CD3+ T cells achieved therapeutic levels (1000 cells/μL of blood) in all three dogs between day 70 and day 130 post-treatment (Fig 1B). We further validated the functionality of these cells by showing that they express a diverse T cell receptor repertoire using spectratyping analysis. In addition, peripheral blood mononuclear cells from the treated animals could be activated in vitro by exposure to the mitogen Phytohemagglutinin A at a level comparable to normal cells. Immunization of the treated dogs with bacteriophage ΦX174 showed production of specific IgG antibodies, suggesting the ability of B lymphocytes to undergo isotype switching. Finally, retroviral integration site analysis revealed polyclonal contribution to the reconstituting T cells. In summary, our data suggest that the PGK promoter results in a robust and sustained correction of progenitor T cells in a relevant large-animal disease model for primary immunodeficiency. The outcome in dogs was substantially improved compared to our previous study using EF1α, where robust lymphocyte marking was achieved in only 2 of 5 dogs, and where clonal dominance was observed. Ongoing work will determine whether the superior performance of the PGK vector is due to higher γC expression in PGK vs. EF1α corrected cells. Figure 1. T-cells expansion in X-SCID dogs following FV treatment. A) Percent of gene-modified peripheral blood lymphocytes in each experimental arm after in vivo gene therapy. B) Absolute CD3+ count per μL peripheral blood in all treated animals. Dotted line indicates therapeutic counts of CD3+ cells. Figure 1. T-cells expansion in X-SCID dogs following FV treatment. A) Percent of gene-modified peripheral blood lymphocytes in each experimental arm after in vivo gene therapy. B) Absolute CD3+ count per μL peripheral blood in all treated animals. Dotted line indicates therapeutic counts of CD3+ cells. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 1 (4) ◽  
pp. 16-20 ◽  
Author(s):  
A. V. Lugovaya ◽  
N. M. Kalinina ◽  
V. Ph. Mitreikin ◽  
Yu. P. Kovaltchuk ◽  
A. V. Artyomova ◽  
...  

Apoptosis, along with proliferation, is a form of lymphocyte response to activating stimuli. In the early stages of cell differentiation, the apoptotic response prevails and it results to the formation of tolerance to inductor antigen. Mature lymphocytes proliferate in response to stimulation and it means the initial stage in the development of the immune response. Since in this case apoptosis and proliferation acts as alternative processes, their ratio can serve as a measure of the effectiveness of the cellular response to activating signals. The resistance of autoreactive T-cells to apoptosis is the main key point in the development of type 1 diabetes mellitus (T1DM). Autoreactive T-cells migrates from the bloodstream to the islet tissue of the pancreas and take an active part in b cells destruction. The resistance of autoreactive effector T-cells to apoptosis may suggest their high proliferative potential. Therefore, the comparative evaluation of apoptosis and proliferation of peripheral blood lymphocytes can give a more complete picture of their functional state and thus will help to reveal the causes of ineffective peripheral blood T-ceiis apoptosis in patients with T1DM and will help to understand more deeply the pathogenesis of the disease. in this article, the features of proliferative response of peripheral blood T-cells in patients with T1DM and in individuals with high risk of developing T1DM have been studied. Apoptosis of T-cell subpopulations has been investigated. The correlation between the apoptotic markers and the intensity of spontaneous and activation- induced in vitro T-cells proliferation of was revealed. it was determined, that autoreactive peripheral blood T-cells were resistant to apoptosis and demonstrated the increased proliferative potential in patients with T1DM and in individuals with high risk of developing T1DM.


1994 ◽  
Vol 53 (2) ◽  
pp. 122-127 ◽  
Author(s):  
P P Sfikakis ◽  
J Tesar ◽  
S Theocharis ◽  
G L Klipple ◽  
G C Tsokos

2001 ◽  
Vol 75 (19) ◽  
pp. 9328-9338 ◽  
Author(s):  
Lennart Holterman ◽  
Rob Dubbes ◽  
James Mullins ◽  
Gerald Learn ◽  
Henk Niphuis ◽  
...  

ABSTRACT End-stage simian immunodeficiency virus (SIV) isolates are suggested to be the most fit of the evolved virulent variants that precipitate the progression to AIDS. To determine if there were common characteristics of end-stage variants which emerge from accelerated cases of AIDS, a molecular clone was derived directly from serum following in vivo selection of a highly virulent SIV isolate obtained by serial end-stage passage in rhesus monkeys (Macaca mulatta). This dominant variant caused a marked cytopathic effect and replicated to very high levels in activated but not resting peripheral blood lymphocytes. Furthermore, although this clone infected but did not replicate to detectable levels in rhesus monocyte-derived macrophages, these cells were able to transmit infection to autologous T cells upon contact. Interestingly, although at low doses this end-stage variant did not use any of the known coreceptors except CCR5, it was able to infect and replicate in human peripheral blood mononuclear cells homozygous for the Δ32 deletion of CCR5, suggesting the use of a novel coreceptor. It represents the first pathogenic molecular clone of SIV derived from viral RNA in serum and provides evidence that not only the genetic but also the biological characteristics acquired by highly fit late-stage disease variants may be distinct in different hosts.


1986 ◽  
Vol 58 (1) ◽  
pp. 1-8 ◽  
Author(s):  
B E Korba ◽  
F Wells ◽  
B C Tennant ◽  
G H Yoakum ◽  
R H Purcell ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ditte E. Jæhger ◽  
Mie L. Hübbe ◽  
Martin K. Kræmer ◽  
Gael Clergeaud ◽  
André V. Olsen ◽  
...  

AbstractAdoptive T-cell transfer (ACT) offers a curative therapeutic option for subsets of melanoma and hematological cancer patients. To increase response rates and broaden the applicability of ACT, it is necessary to improve the post-infusion performance of the transferred T cells. The design of improved treatment strategies includes transfer of cells with a less differentiated phenotype. Such T cell subsets have high proliferative potential but require stimulatory signals in vivo to differentiate into tumor-reactive effector T cells. Thus, combination strategies are needed to support the therapeutic implementation of less differentiated T cells. Here we show that systemic delivery of tumor-associated antigens (TAAs) facilitates in vivo priming and expansion of previously non-activated T cells and enhance the cytotoxicity of activated T cells. To achieve this in vivo priming, we use flexible delivery vehicles of TAAs and a TLR7/8 agonist. Contrasting subcutaneous delivery systems, these vehicles accumulate TAAs in the spleen, thereby achieving close proximity to both cross-presenting dendritic cells and transferred T cells, resulting in robust T-cell expansion and anti-tumor reactivity. This TAA delivery platform offers a strategy to safely potentiate the post-infusion performance of T cells using low doses of antigen and TLR7/8 agonist, and thereby enhance the effect of ACT.


Sign in / Sign up

Export Citation Format

Share Document