scholarly journals Five new mutations in the uroporphyrinogen decarboxylase gene identified in families with cutaneous porphyria

Blood ◽  
1996 ◽  
Vol 88 (9) ◽  
pp. 3589-3600 ◽  
Author(s):  
JF McManus ◽  
CG Begley ◽  
S Sassa ◽  
S Ratnaike

We describe five new mutations in the uroporphyrinogen decarboxylase (UROD) gene. All mutations were observed in conjunction with decreased erythrocyte UROD and clinical familial porphyria cutanea tarda (fPCT), (four families) or hepatoerythropoietic porphyria (HEP), (one family). The fPCT mutations included three point mutations that resulted in amino acid substitutions: a lysine to glutamine at amino acid position 253 (exon 7); a glycine to arginine at position 318 (exon 10); an isoleucine to threonine at position 334 (exon 10). The lysine to glutamine at amino acid position 253 was found in conjunction with a single C nucleotide deletion in exon 8 on the same allele of the UROD gene in the same family. This deletion resulted in a shift in the reading frame and the introduction of a premature stop codon 8 amino acids downstream. In the fourth family, a 31-bp deletion (nucleotides 828–858: exon 8) of the coding region, resulted in a frameshift and the introduction of a stop codon 19 amino acids downstream. A point mutation was observed in an individual diagnosed with HEP, resulting in an alanine to glycine change at amino acid position 80 and was present on both alleles. All mutations were confirmed in at least one other family member. The impact of these mutations on the function of the UROD protein was examined using in vitro protein expression and with activity assessed using pentacarboxylic acid porphyrinogen I as a substrate for UROD. Although three mutations reduced UROD activity to < 15% of normal, one resulted in a UROD protein with 50% functional activity and the other had near normal activity. These results indicate that many different genetic lesions of the UROD gene are associated with fPCT.

Blood ◽  
2003 ◽  
Vol 101 (11) ◽  
pp. 4430-4436 ◽  
Author(s):  
Yelena Krijanovski ◽  
Valerie Proulle ◽  
Fakhri Mahdi ◽  
Marie Dreyfus ◽  
Werner Müller-Esterl ◽  
...  

Abstract A 6-year-old male with vertebral-basilar artery thrombosis was recognized to have high-molecular-weight kininogen (HK) deficiency. The propositus had no HK procoagulant activity and antigen (&lt; 1%). Using monoclonal antibodies (Mabs) to kininogen domain 3, the propositus, family members, and Fitzgerald plasma were determined to have detectable low-molecular-weight kininogen. Mabs to HK domains 5 and 6 do not detect HK antigen in the propositus' plasma. The propositus has a single base pair (bp) deletion in cDNA position 1492 of exon 10 affecting amino acid 480 of the mature protein and resulting in a frameshift and a premature stop codon at position 1597 (amino acid 532). Unexpectedly, Mabs to the heavy chain and domain 5 of HK detect a 92-kDa form of HK in Fitzgerald plasma, the first HK-deficient plasma. The 92-kDa Fitzgerald HK has amino acid residues through 502, corresponding to domains 1 through 5, but lacks epitopes of domain 6 (positions 543 to 595). Fitzgerald DNA has a normal exon 10, but a 17-bp mutation in intron 9. These combined results indicate that mutations in the kininogen gene may differentially affect biosynthesis, processing, and/or secretion of HK.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Abhishek Kumar ◽  
Nagarajan Paramasivam ◽  
Obul Reddy Bandapalli ◽  
Matthias Schlesner ◽  
Tianhui Chen ◽  
...  

Abstract Background The most frequently identified strong cancer predisposition mutations for colorectal cancer (CRC) are those in the mismatch repair (MMR) genes in Lynch syndrome. Laboratory diagnostics include testing tumors for immunohistochemical staining (IHC) of the Lynch syndrome-associated DNA MMR proteins and/or for microsatellite instability (MSI) followed by sequencing or other techniques, such as denaturing high performance liquid chromatography (DHPLC), to identify the mutation. Methods In an ongoing project focusing on finding Mendelian cancer syndromes we applied whole-exome/whole-genome sequencing (WES/WGS) to 19 CRC families. Results Three families were identified with a pathogenic/likely pathogenic germline variant in a MMR gene that had previously tested negative in DHPLC gene variant screening. All families had a history of CRC in several family members across multiple generations. Tumor analysis showed loss of the MMR protein IHC staining corresponding to the mutated genes, as well as MSI. In family A, a structural variant, a duplication of exons 4 to 13, was identified in MLH1. The duplication was predicted to lead to a frameshift at amino acid 520 and a premature stop codon at amino acid 539. In family B, a 1 base pair deletion was found in MLH1, resulting in a frameshift and a stop codon at amino acid 491. In family C, we identified a splice site variant in MSH2, which was predicted to lead loss of a splice donor site. Conclusions We identified altogether three pathogenic/likely pathogenic variants in the MMR genes in three of the 19 sequenced families. The MLH1 variants, a duplication of exons 4 to 13 and a frameshift variant, were novel, based on the InSiGHT and ClinVar databases; the MSH2 splice site variant was reported by a single submitter in ClinVar. As a variant class, duplications have rarely been reported in the MMR gene literature, particularly those covering several exons.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 406.2-407
Author(s):  
K. Pavelcova ◽  
J. Bohata ◽  
B. Stiburkova

Background:The level of uric acid is largely determined by the functions of urate transporters, which are located in the kidney and intestine. The ABCG2 protein is the major excretor of uric acid and its dysfunction may lead to the development of hyperuricemia and gout.Objectives:The aim of our study was to detect the occurrence and frequency of allelic variants in the ABCG2 gene that can lead to impaired function of the ABCG2 protein and to the development of hyperuricemia and gout.Methods:We examined allelic variants of ABCG2 using PCR amplification and Sanger sequencing of all coding regions and exon-intron boundaries in 359 patients with primary hyperuricemia and gout.Results:We found a rare in-frame deletion p.K360del and 15 missense variants, two of which were common (p.V12M, p.Q141K) and 13 were very rare (p.M71V, p.G74D, p.M131I, p.R147W, p.T153M, p.I242T, p.R236X, p.F373C, p.T421A, p.T434M, p.S476P, p.S572R, p.D620N). The p.R236X variant leads to a premature stop codon. The p.V12M variant probably has a protective effect against gout (minor allele frequency – MAF – in our cohort = 0,025 / MAF in the European population = 0,061), while the p.Q141K variant increases the risk of gout (MAF in our cohort = 0,213 / MAF in the European population = 0,094) (1). As for the rare variants, the p.R147W, p.T153M, p.F373C, p.T434M, p.S476P and p.S572R according to functional analyzes reduce the function of the ABCG2 protein (2). Based on in silico prediction, the impact on reduced function is expected for variants p.M71V, p.G74D, p.M131I, p.R147W, p.I242T, p.F373C, p.T434M, p.S476P and p.S572R.Conclusion:Our data suggest that the common variant p.Q141K and most of the rare variants in the ABCG2 gene affect the function of the ABCG2 urate transporter and are a genetic risk factor for hyperuricemia and gout.References:[1]Stiburkova B, et al. Functional non-synonymous variants of ABCG2 and gout risk. Rheumatology (Oxford). 2017 Nov 1; 56(11):1982-1992.[2]Toyoda Y, et al. Functional characterization of clinically-relevant rare variants in ABCG2 identified in a gout and hyperuricemia cohort. Cells. 2019 Apr 18;8(4).Acknowledgements:This study was supported by the project for conceptual development of research organization 00023728 (Institute of Rheumatology) and RVO VFN64165.Disclosure of Interests:None declared


Reproduction ◽  
2016 ◽  
Vol 152 (6) ◽  
pp. 665-672 ◽  
Author(s):  
Samantha A M Young ◽  
Haruhiko Miyata ◽  
Yuhkoh Satouh ◽  
Masanaga Muto ◽  
Martin R Larsen ◽  
...  

IZUMO1 is a protein found in the head of spermatozoa that has been identified as essential for sperm–egg fusion. Its binding partner in the egg has been discovered (JUNO); however, the roles of several domains within IZUMO1 remain unexplored. One such domain is the C-terminus, which undergoes major phosphorylation changes in the cytoplasmic portion of the protein during rat epididymal transit. However, the cytoplasmic tail of IZUMO1 in many species is highly variable, ranging from 55 to one amino acid. Therefore, to understand the role of the cytoplasmic tail of IZUMO1 in mouse, we utilised the gene manipulation system of CRISPR/Cas9 to generate a point mutation resulting in a premature stop codon, producing mice with truncated IZUMO1. Mice without the cytoplasmic tail of IZUMO1 showed normal fertility but decreased the amount of protein, indicating that whilst this region is important for the expression level of IZUMO1, it is dispensable for fertilisation in the mouse.


1986 ◽  
Vol 6 (10) ◽  
pp. 3470-3480 ◽  
Author(s):  
E Moran ◽  
B Zerler ◽  
T M Harrison ◽  
M B Mathews

The transformation and early adenovirus gene transactivation functions of the E1A region were analyzed with deletion and point mutations. Deletion of amino acids from position 86 through 120 had little effect on the lytic or transforming functions of the E1A products, while deletion of amino acids from position 121 through 150 significantly impaired both functions. The sensitivity of the transformation function to alterations in the region from amino acid position 121 to 150 was further indicated by the impairment of transforming activity resulting from single amino acid substitutions at positions 124 and 135. Interestingly, conversion of a cysteine residue at position 124 to glycine severely impaired the transformation function without affecting the early adenovirus gene activating functions. Single amino acid substitutions in a different region of the E1A gene had the converse effect. All the mutants produced polypeptides of sufficient stability to be detected by Western immunoblot analysis. The single amino acid substitutions at positions 124 and 135, although impairing the transformation functions, did not detectably alter the formation of the higher-apparent-molecular-weight forms of the E1A products.


Endocrinology ◽  
1997 ◽  
Vol 138 (4) ◽  
pp. 1413-1418 ◽  
Author(s):  
Patricia Grasso ◽  
Matthew C. Leinung ◽  
Stacy P. Ingher ◽  
Daniel W. Lee

Abstract In C57BL/6J ob/ob mice, a single base mutation of the ob gene in codon 105 results in the replacement of arginine by a premature stop codon and production of a truncated inactive form of leptin. These observations suggest that leptin activity may be localized, at least in part, to domains distal to amino acid residue 104. To investigate this possibility, we synthesized six overlapping peptide amides corresponding to residues 106–167 of leptin, and examined their effects on body weight and food intake in female C57BL/6J ob/ob mice. When compared with vehicle-injected control mice, weight gain by mice receiving 28 daily 1-mg ip injections of LEP-(106–120), LEP-(116–130), or LEP-(126–140) was significantly (P &lt; 0.01) reduced with no apparent toxicity. Weight gain by mice receiving LEP-(136–150), LEP-(146–160), or LEP-(156–167) was not significantly different from that of vehicle-injected control mice. The effects of LEP-(106–120), LEP-(116–130), or LEP-(126–140) were most pronounced during the first week of peptide treatment. Within 7 days, mice receiving these peptides lost 12.3%, 13.8%, and 9.8%, respectively, of their initial body weights. After 28 days, mice given vehicle alone, LEP-(136–150), LEP-(146–160), or LEP-(156–167) were 14.7%, 20.3%, 25.0%, and 24.8% heavier, respectively, than they were at the beginning of the study. Mice given LEP-(106–120) or LEP-(126–140) were only 1.8% and 4.2% heavier, respectively, whereas mice given LEP-(116–130) were 3.4% lighter. Food intake by mice receiving LEP-(106–120), LEP-(116–130), or LEP-(126–140), but not by mice receiving LEP-(136–150), LEP-(146–160), or LEP-(156–167), was reduced by 15%. The results of this study indicate 1) that leptin activity is localized, at least in part, in domains between residues 106–140; 2) that leptin-related peptides have in vivo effects similar to those of native leptin; and 3) offer hope for development of peptide analogs of leptin having potential application in human or veterinary medicine.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Michel White ◽  
Peter Carson ◽  
Inder S Anand ◽  
Stephen S Gottlieb ◽  
JoAnn Lindenfeld ◽  
...  

Introduction: Bucindolol is a nonselective beta-adrenergic blocker with potent sympatholytic properties. The Beta-blocker Evaluation of Survival Trial (BEST) reported that the administration of bucindolol resulted in a nonsignificant decrease in total mortality (HR = 0.89 (0.78, 1.02), unadjusted p=0.10) in patients with advanced, NYHA Class III-IV heart failure (HF). Recent observations from that trial also reported that the amino acid arginine (Arg/Arg) or glycine (any Gly) in position 389 of the beta-1 receptor plays a significant role on the clinical response to bucindolol. The impact of bucindolol on cardiovascular mortality and morbidity (cardiovascular hospitalizations) has been incompletely investigated, because hospitalizations had been evaluated from case report forms (CRFs) only, and never adjudicated by the endpoints committee (EPC). Methods: The BEST data base consists of 2708 patients with a mean follow-up of 2.0 years. Cardiovascular (CV) mortality and hospitalizations have now been evaluated by EPC, which further subclassified total hospitalizations into cardiovascular (CV) and those due to worsening heart failure (HF). The impacts of Arg or Gly encoded at amino acid position 389 on endpoints were further investigated in the 1040 patient substudy. Results: Time to event results for adjudicated CV endpoints are presented below. Conclusions: Chronic administration of bucindolol results in a significant reduction in cardiovascular hospitalizations and mortality. Effects on either are strikingly beta-1 389 Arg/Gly specific, with the higher functioning, Arg/Arg version of the receptor associated with large treatment effects and Gly carriers exhibiting little or no evidence of efficacy. Genetic targeting of the β 1 -ΑR 389 polymorphism may improve the clinical responses to bucindolol for CV mortality and morbidity.


Blood ◽  
2000 ◽  
Vol 96 (7) ◽  
pp. 2501-2505 ◽  
Author(s):  
Maurizio Margaglione ◽  
Rosa Santacroce ◽  
Donatella Colaizzo ◽  
Davide Seripa ◽  
Gennaro Vecchione ◽  
...  

Abstract Congenital afibrinogenemia is a rare autosomal recessive disorder characterized by a hemorrhagic diathesis of variable severity. Although more than 100 families with this disorder have been described, genetic defects have been characterized in few cases. An investigation of a young propositus, offspring of a consanguineous marriage, with undetectable levels of functional and quantitative fibrinogen, was conducted. Sequence analysis of the fibrinogen genes showed a homozygous G-to-A mutation at the fifth nucleotide (nt 2395) of the third intervening sequence (IVS) of the γ-chain gene. Her first-degree relatives, who had approximately half the normal fibrinogen values and showed concordance between functional and immunologic levels, were heterozygtes. The G-to-A change predicts the disappearance of a donor splice site. After transfection with a construct, containing either the wild-type or the mutated sequence, cells with the mutant construct showed an aberrant messenger RNA (mRNA), consistent with skipping of exon 3, but not the expected mRNA. Sequencing of the abnormal mRNA showed the complete absence of exon 3. Skipping of exon 3 predicts the deletion of amino acid sequence from residue 16 to residue 75 and shifting of reading frame at amino acid 76 with a premature stop codon within exon 4 at position 77. Thus, the truncated γ-chain gene product would not interact with other chains to form the mature fibrinogen molecule. The current findings show that mutations within highly conserved IVS regions of fibrinogen genes could affect the efficiency of normal splicing, giving rise to congenital afibrinogenemia.


2000 ◽  
Vol 66 (4) ◽  
pp. 1354-1359 ◽  
Author(s):  
Liesbeth Rijnen ◽  
Pascal Courtin ◽  
Jean-Claude Gripon ◽  
Mireille Yvon

ABSTRACT The first step of amino acid degradation in lactococci is a transamination, which requires an α-keto acid as the amino group acceptor. We have previously shown that the level of available α-keto acid in semihard cheese is the first limiting factor for conversion of amino acids to aroma compounds, since aroma formation is greatly enhanced by adding α-ketoglutarate to cheese curd. In this study we introduced a heterologous catabolic glutamate dehydrogenase (GDH) gene into Lactococcus lactis so that this organism could produce α-ketoglutarate from glutamate, which is present at high levels in cheese. Then we evaluated the impact of GDH activity on amino acid conversion in in vitro tests and in a cheese model by using radiolabeled amino acids as tracers. The GDH-producing lactococcal strain degraded amino acids without added α-ketoglutarate to the same extent that the wild-type strain degraded amino acids with added α-ketoglutarate. Interestingly, the GDH-producing lactococcal strain produced a higher proportion of carboxylic acids, which are major aroma compounds. Our results demonstrated that a GDH-producing lactococcal strain could be used instead of adding α-ketoglutarate to improve aroma development in cheese.


Sign in / Sign up

Export Citation Format

Share Document