scholarly journals Expression of a Heterologous Glutamate Dehydrogenase Gene inLactococcus lactis Highly Improves the Conversion of Amino Acids to Aroma Compounds

2000 ◽  
Vol 66 (4) ◽  
pp. 1354-1359 ◽  
Author(s):  
Liesbeth Rijnen ◽  
Pascal Courtin ◽  
Jean-Claude Gripon ◽  
Mireille Yvon

ABSTRACT The first step of amino acid degradation in lactococci is a transamination, which requires an α-keto acid as the amino group acceptor. We have previously shown that the level of available α-keto acid in semihard cheese is the first limiting factor for conversion of amino acids to aroma compounds, since aroma formation is greatly enhanced by adding α-ketoglutarate to cheese curd. In this study we introduced a heterologous catabolic glutamate dehydrogenase (GDH) gene into Lactococcus lactis so that this organism could produce α-ketoglutarate from glutamate, which is present at high levels in cheese. Then we evaluated the impact of GDH activity on amino acid conversion in in vitro tests and in a cheese model by using radiolabeled amino acids as tracers. The GDH-producing lactococcal strain degraded amino acids without added α-ketoglutarate to the same extent that the wild-type strain degraded amino acids with added α-ketoglutarate. Interestingly, the GDH-producing lactococcal strain produced a higher proportion of carboxylic acids, which are major aroma compounds. Our results demonstrated that a GDH-producing lactococcal strain could be used instead of adding α-ketoglutarate to improve aroma development in cheese.

2004 ◽  
Vol 70 (7) ◽  
pp. 3855-3861 ◽  
Author(s):  
Sandra Helinck ◽  
Dominique Le Bars ◽  
Daniel Moreau ◽  
Mireille Yvon

ABSTRACT Although a large number of key odorants of Swiss-type cheese result from amino acid catabolism, the amino acid catabolic pathways in the bacteria present in these cheeses are not well known. In this study, we compared the in vitro abilities of Lactobacillus delbrueckii subsp. lactis, Lactobacillus helveticus, and Streptococcus thermophilus to produce aroma compounds from three amino acids, leucine, phenylalanine, and methionine, under mid-pH conditions of cheese ripening (pH 5.5), and we investigated the catabolic pathways used by these bacteria. In the three lactic acid bacterial species, amino acid catabolism was initiated by a transamination step, which requires the presence of an α-keto acid such as α-ketoglutarate (α-KG) as the amino group acceptor, and produced α-keto acids. Only S. thermophilus exhibited glutamate dehydrogenase activity, which produces α-KG from glutamate, and consequently only S. thermophilus was capable of catabolizing amino acids in the reaction medium without α-KG addition. In the presence of α-KG, lactobacilli produced much more varied aroma compounds such as acids, aldehydes, and alcohols than S. thermophilus, which mainly produced α-keto acids and a small amount of hydroxy acids and acids. L. helveticus mainly produced acids from phenylalanine and leucine, while L. delbrueckii subsp. lactis produced larger amounts of alcohols and/or aldehydes. Formation of aldehydes, alcohols, and acids from α-keto acids by L. delbrueckii subsp. lactis mainly results from the action of an α-keto acid decarboxylase, which produces aldehydes that are then oxidized or reduced to acids or alcohols. In contrast, the enzyme involved in the α-keto acid conversion to acids in L. helveticus and S. thermophilus is an α-keto acid dehydrogenase that produces acyl coenzymes A.


2008 ◽  
Vol 410 (1) ◽  
pp. 131-140 ◽  
Author(s):  
Rachael A. Dunlop ◽  
Roger T. Dean ◽  
Kenneth J. Rodgers

Oxidized protein deposition and accumulation have been implicated in the aetiology of a wide variety of age-related pathologies. Protein oxidation in vivo commonly results in the in situ modification of amino acid side chains, generating new oxidized amino acid residues in proteins. We have demonstrated previously that certain oxidized amino acids can be (mis)incorporated into cell proteins in vitro via protein synthesis. In the present study, we show that incorporation of o- and m-tyrosine resulted in increased protein catabolism, whereas dopa incorporation generated proteins that were inefficiently degraded by cells. Incorporation of higher levels of L-dopa into proteins resulted in an increase in the activity of lysosomal cathepsins, increased autofluorescence and the generation of high-molecular-mass SDS-stable complexes, indicative of protein aggregation. These effects were due to proteins containing incorporated L-dopa, since they were not seen with the stereoisomer D-dopa, which enters the cell and generates the same reactive species as L-dopa, but cannot be incorporated into proteins. The present study highlights how the nature of the oxidative modification to the protein can determine the efficiency of its removal from the cell by proteolysis. Protection against the generation of dopa and other species that promote resistance to proteolysis might prove to be critical in preventing toxicity from oxidative stress in pathologies associated with protein deposition, such as atherosclerosis, Alzheimer's disease and Parkinson's disease.


2019 ◽  
Vol 3 (4) ◽  
pp. 1246-1253 ◽  
Author(s):  
Henrique S Cemin ◽  
Mike D Tokach ◽  
Jason C Woodworth ◽  
Steve S Dritz ◽  
Joel M DeRouchey ◽  
...  

Abstract The branched-chain amino acids (BCAA) Leu, Ile, and Val share the first steps of their catabolism due to similarities in their structure. The BCAA are reversibly transaminated in skeletal muscle through the activity of branched-chain aminotransferase and then transported to the liver. They undergo an irreversible decarboxylation catalyzed by the branched-chain α-keto acid dehydrogenase complex. Both enzymes are common to Leu, Ile, and Val and increased enzymatic activity stimulated by an excess of one of them will increase the catabolism of all BCAA, which can result in antagonisms. Leucine and its keto acid are the most potent stimulators of BCAA catabolic enzymes. Moreover, BCAA and large neutral amino acids (LNAA) share common brain transporters. Research has shown that high concentrations of BCAA, especially Leu, can decrease the absorption of LNAA, such as Trp, which is a precursor of serotonin and can have a significant impact in feed intake regulation. Finally, high Leu concentrations have the ability to overstimulate the mTOR signaling pathway, resulting in an inhibitory effect on feed intake. Most of the research conducted to evaluate the impact of BCAA on growth performance of pigs seems to agree that high levels of Leu decrease weight gain, mostly due to a reduction in feed intake. However, some studies, mostly with finishing pigs, observed no evidence for an impact on growth performance even with extremely high levels of Leu. It could be hypothesized that these inconsistencies are driven by the entire dietary amino acid profile as opposed to only considering the level of Leu. Grow-finish diets typically contain high levels of Leu, but the other BCAA are also well above the requirement and could potentially mitigate the negative impact of Leu on BCAA catabolism. Indeed, some studies suggest that when diets contain high levels of Leu, more Ile and Val are needed to optimize growth performance. However, the precise relationship between BCAA and their balance in swine diets is not fully understood. More research is needed to understand and quantify the relationship between LNAA and BCAA.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1452
Author(s):  
Raluca-Maria Pârlici ◽  
Aurel Maxim ◽  
Stefania Mirela Mang ◽  
Ippolito Camele ◽  
Lucia Mihalescu ◽  
...  

Organic berry plantations have been gaining popularity among farmers during recent years. Even so, farmers experience serious challenges in disease control management, which is a concern in organic farming. Phragmidiumrubi-idaei (DC) P. Karst is the pathogen responsible for blackberry and raspberry rust disease, one of the most present and active diseases in plantations. The antifungal certified products found on the organic farming market offer the opportunity for an efficient control strategy over plant pathogens in fruit shrub plantations. In this study, 5 natural based products—namely Altosan, Mimox, Canelys, Zitron, and Zeolite—were tested for their fungistatic effect over P. rubi-idaei. The experiments were carried out under laboratory conditions, performing observations over the impact of organic products, used at different concentration levels, on rust conidia germination. Moreover, field experiments were conducted in order to evaluate the efficiency of different treatments for rust control on raspberry (‘Polka’, ‘Veten’ and ‘Heritage’) and blackberry (‘Thorn Free’, ‘Chester’ and ‘Loch Ness’) varieties. Data analysis based on ANOVA tests showed significant differences between the tested variants and the control sample at p < 0.001. Furthermore, LSD test confirmed differences between all substances tested (p < 0.005). The natural products Canelys (formulated with cinnamon) and Zytron (based on citrus extract) have proven the highest inhibitory capacity for conidia germination during in vitro tests registering values of 80.42% and 78.34%, respectively. The same high inhibitory rates against rust pathogen were kept also in the field tests using the same two natural-based products mentioned earlier. In addition, outcomes from this study demonstrated that Zeolite is not recommended for raspberry or blackberry rust control.


1955 ◽  
Vol 215 (1) ◽  
pp. 111-124 ◽  
Author(s):  
Henry Borsook ◽  
Adolph Abrams ◽  
Peter H. Lowy

2021 ◽  
Vol 22 (12) ◽  
pp. 6252
Author(s):  
Paula Ossowicz-Rupniewska ◽  
Rafał Rakoczy ◽  
Anna Nowak ◽  
Maciej Konopacki ◽  
Joanna Klebeko ◽  
...  

The potential of bacterial cellulose as a carrier for the transport of ibuprofen (a typical example of non-steroidal anti-inflammatory drugs) through the skin was investigated. Ibuprofen and its amino acid ester salts-loaded BC membranes were prepared through a simple methodology and characterized in terms of structure and morphology. Two salts of amino acid isopropyl esters were used in the research, namely L-valine isopropyl ester ibuprofenate ([ValOiPr][IBU]) and L-leucine isopropyl ester ibuprofenate ([LeuOiPr][IBU]). [LeuOiPr][IBU] is a new compound; therefore, it has been fully characterized and its identity confirmed. For all membranes obtained the surface morphology, tensile mechanical properties, active compound dissolution assays, and permeation and skin accumulation studies of API (active pharmaceutical ingredient) were determined. The obtained membranes were very homogeneous. In vitro diffusion studies with Franz cells were conducted using pig epidermal membranes, and showed that the incorporation of ibuprofen in BC membranes provided lower permeation rates to those obtained with amino acids ester salts of ibuprofen. This release profile together with the ease of application and the simple preparation and assembly of the drug-loaded membranes indicates the enormous potentialities of using BC membranes for transdermal application of ibuprofen in the form of amino acid ester salts.


2015 ◽  
Vol 24 (4) ◽  
pp. 197-205
Author(s):  
Dwi Wulandari ◽  
Lisnawati Rachmadi ◽  
Tjahjani M. Sudiro

Background: E6 and E7 are oncoproteins of HPV16. Natural amino acid variation in HPV16 E6 can alter its carcinogenic potential. The aim of this study was to analyze phylogenetically E6 and E7 genes and proteins of HPV16 from Indonesia and predict the effects of single amino acid substitution on protein function. This analysis could be used to reduce time, effort, and research cost as initial screening in selection of protein or isolates to be tested in vitro or in vivo.Methods: In this study, E6 and E7 gene sequences were obtained from 12 samples of  Indonesian isolates, which  were compared with HPV16R (prototype) and 6 standard isolates in the category of European (E), Asian (As), Asian-American (AA), African-1 (Af-1), African-2 (Af-2), and North American (NA) branch from Genbank. Bioedit v.7.0.0 was used to analyze the composition and substitution of single amino acids. Phylogenetic analysis of E6 and E7 genes and proteins was performed using Clustal X (1.81) and NJPLOT softwares. Effects of single amino acid substitutions on protein function of E6 and E7 were analysed by SNAP.Results: Java variants and isolate ui66* belonged to European branch, while the others belonged to Asian and African branches. Twelve changes of amino acids were found in E6 and one in E7 proteins. SNAP analysis showed two non neutral mutations, i.e. R10I and C63G in E6 proteins. R10I mutations were found in Af-2 genotype (AF472509) and Indonesian isolates (Af2*), while C63G mutation was found only in Af2*.Conclusion: E6 proteins of HPV16 variants were more variable than E7. SNAP analysis showed that only E6 protein of African-2 branch had functional differences compared to HPV16R.


1971 ◽  
Vol 121 (5) ◽  
pp. 817-827 ◽  
Author(s):  
R. C. Hider ◽  
E. B. Fern ◽  
D. R. London

1. The kinetics of radioactive labelling of extra- and intra-cellular amino acid pools and protein of the extensor digitorum longus muscle were studied after incubations with radioactive amino acids in vitro. 2. The results indicated that an extracellular pool could be defined, the contents of which were different from those of the incubation medium. 3. It was concluded that amino acids from the extracellular pool, as defined in this study, were incorporated directly into protein.


1973 ◽  
Vol 51 (12) ◽  
pp. 933-941 ◽  
Author(s):  
Njanoor Narayanan ◽  
Jacob Eapen

The effect of cycloheximide in vitro and in vivo on the incorporation of labelled amino acids into protein by muscles, liver, kidneys, and brain of rats and pigeons was studied. In vitro incorporation of amino acids into protein by muscle microsomes, myofibrils, and myofibrillar ribosomes was not affected by cycloheximide. In contrast, administration of the antibiotic into intact animals at a concentration of 1 mg/kg body weight resulted in considerable inhibition of amino acid incorporation into protein by muscles, liver, kidneys, and brain. This inhibition was observed in all the subcellular fractions of these tissues during a period of 10–40 min after the administration of the precursor. Tissue homogenates derived from in vivo cycloheximide-treated animals did not show significant alteration in in vitro amino acid incorporation with the exception of brain, which showed a small but significant enhancement.


1993 ◽  
Vol 13 (8) ◽  
pp. 5010-5019 ◽  
Author(s):  
J Heitman ◽  
A Koller ◽  
J Kunz ◽  
R Henriquez ◽  
A Schmidt ◽  
...  

The immunosuppressants cyclosporin A, FK506, and rapamycin inhibit growth of unicellular eukaryotic microorganisms and also block activation of T lymphocytes from multicellular eukaryotes. In vitro, these compounds bind and inhibit two different types of peptidyl-prolyl cis-trans isomerases. Cyclosporin A binds cyclophilins, whereas FK506 and rapamycin bind FK506-binding proteins (FKBPs). Cyclophilins and FKBPs are ubiquitous, abundant, and targeted to multiple cellular compartments, and they may fold proteins in vivo. Previously, a 12-kDa cytoplasmic FKBP was shown to be only one of at least two FK506-sensitive targets in the yeast Saccharomyces cerevisiae. We find that a second FK506-sensitive target is required for amino acid import. Amino acid-auxotrophic yeast strains (trp1 his4 leu2) are FK506 sensitive, whereas prototrophic strains (TRP1 his4 leu2, trp1 HIS4 leu2, and trp1 his4 LEU2) are FK506 resistant. Amino acids added exogenously to the growth medium mitigate FK506 toxicity. FK506 induces GCN4 expression, which is normally induced by amino acid starvation. FK506 inhibits transport of tryptophan, histidine, and leucine into yeast cells. Lastly, several genes encoding proteins involved in amino acid import or biosynthesis confer FK506 resistance. These findings demonstrate that FK506 inhibits amino acid import in yeast cells, most likely by inhibiting amino acid transporters. Amino acid transporters are integral membrane proteins which import extracellular amino acids and constitute a protein family sharing 30 to 35% identity, including eight invariant prolines. Thus, the second FK506-sensitive target in yeast cells may be a proline isomerase that plays a role in folding amino acid transporters during transit through the secretory pathway.


Sign in / Sign up

Export Citation Format

Share Document