scholarly journals Molecular Mechanism of Antifolate Transport-Deficiency in a Methotrexate-Resistant MOLT-3 Human Leukemia Cell Line

Blood ◽  
1997 ◽  
Vol 89 (7) ◽  
pp. 2494-2499 ◽  
Author(s):  
Maokai Gong ◽  
James Yess ◽  
Tatiana Connolly ◽  
S. Percy Ivy ◽  
Takao Ohnuma ◽  
...  

Abstract Ohnuma et al reported a series of methotrexate-resistant MOLT-3 human T-cell acute lymphoblastic leukemia cell lines that showed decreasing methotrexate (MTX) uptake as the sublines acquired increasing MTX resistance (Cancer Res 45:1815, 1985). The alteration of MTX uptake kinetics in these cells, the intermediately resistant MOLT-3/MTX200 and the highly resistant MOLT-3/MTX10,000 cell lines, was attributed to a change in Vmax for methotrexate transport, without an apparent change in affinity of the transporter for MTX. We studied these cell lines to determine whether alteration of transcription or translation of the recently isolated reduced folate carrier gene (RFC1) was the cause of MTX transport deficiency in these cell lines. Reconstitution of RFC activity in MOLT-3/MTX10,000 cells by transduction with a murine RFC retroviral vector reversed MTX resistance and trimetrexate sensitivity. Although RFC1 RNA levels were unchanged in the resistant cell lines, FACS analysis using a polyclonal anti-RFCl antibody showed no detectable RFCl protein in the MOLT-3/MTX10,000 cells. Determination of the nucleotide sequence of RFC1 genes from MOLT-3/MTX10,000 cells revealed that this cell line contained 3 RFC1 alleles: a wild-type allele, an allele containing the premature stop codon at codon 40 and a third allele containing another mutation, which resulted in a premature stop codon at codon 25. We examined the relative expression of these alleles by determining the nucleotide sequence of 24 RFC1 cDNA subclones from MOLT-3/MTX10,000 cells and found that only one-third of these clones contained the wild-type sequence. Determination of the genomic sequence of RFC1 in MOLT-3/MTX200 cells demonstrated that these cells were heterozygous for a mutation at codon 40, but were homozygous for the wild-type sequence at codon 25. Thus, the acquisition of MTX transport-deficiency in MOLT-3/MTX10,000 cells results from inactivating mutations of RFC1 gene alleles.

1988 ◽  
Vol 8 (10) ◽  
pp. 4185-4189 ◽  
Author(s):  
J A Greenspan ◽  
F M Xu ◽  
R L Davidson

The molecular mechanisms of ethyl methanesulfonate-induced reversion in mammalian cells were studied by using as a target a gpt gene that was integrated chromosomally as part of a shuttle vector. Murine cells containing mutant gpt genes with single base changes were mutagenized with ethyl methanesulfonate, and revertant colonies were isolated. Ethyl methanesulfonate failed to increase the frequency of revertants for cell lines with mutant gpt genes carrying GC----AT transitions or AT----TA transversions, whereas it increased the frequency 50-fold to greater than 800-fold for cell lines with mutant gpt genes carrying AT----GC transitions and for one cell line with a GC----CG transversion. The gpt genes of 15 independent revertants derived from the ethyl methanesulfonate-revertible cell lines were recovered and sequenced. All revertants derived from cell lines with AT----GC transitions had mutated back to the wild-type gpt sequence via GC----AT transitions at their original sites of mutation. Five of six revertants derived from the cell line carrying a gpt gene with a GC----CG transversion had mutated via GC----AT transition at the site of the original mutation or at the adjacent base in the same triplet; these changes generated non-wild-type DNA sequences that code for non-wild-type amino acids that are apparently compatible with xanthine-guanine phosphoribosyltransferase activity. The sixth revertant had mutated via CG----GC transversion back to the wild-type sequence. The results of this study define certain amino acid substitutions in the xanthine-guanine phosphoribosyltransferase polypeptide that are compatible with enzyme activity. These results also establish mutagen-induced reversion analysis as a sensitive and specific assay for mutagenesis in mammalian cells.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2376-2376
Author(s):  
Hilmar Quentmeier ◽  
Maria P. Martelli ◽  
Wilhelm G. Dirks ◽  
Niccolo Bolli ◽  
Arcangelo Liso ◽  
...  

Abstract Wild-type nucleophosmin (NPM) is a multifunctional protein shuttling between the nucleus and the cytoplasm. Chromosomal rearrangements leading to NPM fusion proteins occur in leukemias and lymphomas (e.g. with partners RARA, ALK). Recently, Falini et al. reported that 60% of acute myeloid leukemia (AML) patients with normal karyotype carry mutations at exon-12 of the NPM gene. This results in frame shifts that lead to alterations of the C-terminus of NPM resulting in the aberrant cytoplasmic localization of the mutated protein (NPMc+) (1). The effects of a mutationally altered protein on cellular functions like proliferation, differentiation or apoptosis, have often been revealed using immortalized cell lines that carry the mutation in question. Therefore, we screened a panel of 79 myeloid leukemia cell lines for presence of mutations - 4 bp insertions - at the exon-12 of the NPM gene. We performed polymerase chain reaction (PCR) analysis with fluorescent dye-labeled primers. For fragment size determination, the PCR products were mixed with dye-labeled size standards and separated by capillary electrophoresis. OCI-AML3 was the only cell line that expressed a signal in addition to and 4 bp larger than the wild-type NPM signal. Sequencing of the cloned NPM-mutated PCR product showed TCTG duplication at positions 956–959 of exon-12. This mutation was heterozygous and corresponded to the type that occurs in 77% of primary NPMc+ AMLs. OCI-AML3 cells have a hyperdiploid karyotype with 48(45–50)<2n>X/XY, +1, +5, +8, der(1)t(1;18)(p11;q11), i(5p),del(13)(q13q21), dup(17)(q21q25); sideline with r(Y)x1-2 and show the following immunoprofile: CD3−, CD4+, CD7−, CD8−, CD10−, CD13+, CD14−, CD15+, CD19−, CD30−, CD33−, CD34−, CD41+, CD42b−, CD68+, CD235a+, HLA-DR-. Especially the presence of myeloid markers and absence of CD34 is typical for NPMc+ cells (1). Furthermore, immunostaining with anti-NPM antibodies confirmed that the OCI-AML3 cells, like primary NPMc+ AML and in contrast to NPM wild-type cells, show cytoplasmic expression of NPM. Functional studies showed that the altered nucleo-cytoplasmic transport of NPM was nuclear export signalling-dependent and could be blocked by using the specific CRM1/exportin-1 inhibitor leptomycin B. In conclusion, cell line OCI-AML3 promises to be an important tool for studying the biological properties and response to new drugs of NPMc+ AML.


1988 ◽  
Vol 8 (10) ◽  
pp. 4185-4189
Author(s):  
J A Greenspan ◽  
F M Xu ◽  
R L Davidson

The molecular mechanisms of ethyl methanesulfonate-induced reversion in mammalian cells were studied by using as a target a gpt gene that was integrated chromosomally as part of a shuttle vector. Murine cells containing mutant gpt genes with single base changes were mutagenized with ethyl methanesulfonate, and revertant colonies were isolated. Ethyl methanesulfonate failed to increase the frequency of revertants for cell lines with mutant gpt genes carrying GC----AT transitions or AT----TA transversions, whereas it increased the frequency 50-fold to greater than 800-fold for cell lines with mutant gpt genes carrying AT----GC transitions and for one cell line with a GC----CG transversion. The gpt genes of 15 independent revertants derived from the ethyl methanesulfonate-revertible cell lines were recovered and sequenced. All revertants derived from cell lines with AT----GC transitions had mutated back to the wild-type gpt sequence via GC----AT transitions at their original sites of mutation. Five of six revertants derived from the cell line carrying a gpt gene with a GC----CG transversion had mutated via GC----AT transition at the site of the original mutation or at the adjacent base in the same triplet; these changes generated non-wild-type DNA sequences that code for non-wild-type amino acids that are apparently compatible with xanthine-guanine phosphoribosyltransferase activity. The sixth revertant had mutated via CG----GC transversion back to the wild-type sequence. The results of this study define certain amino acid substitutions in the xanthine-guanine phosphoribosyltransferase polypeptide that are compatible with enzyme activity. These results also establish mutagen-induced reversion analysis as a sensitive and specific assay for mutagenesis in mammalian cells.


1998 ◽  
Vol 336 (3) ◽  
pp. 593-598 ◽  
Author(s):  
Andrew S. OPAT ◽  
Hamsa PUTHALAKATH ◽  
Jo BURKE ◽  
Paul A. GLEESON

The analysis of mutations associated with glycosylation-defective cell lines has the potential for identifying critical residues associated with the activities of enzymes involved in the biosynthesis of glycoconjugates. A ricin-resistant (RicR) baby hamster kidney (BHK) cell mutant, clone RicR14, has a deficiency in N-acetylglucosaminyltransferase I (GlcNAc-TI) activity and as a consequence is unable to synthesize complex and hybrid N-glycans. Here we show that RicR14 cells transfected with wild-type GlcNAc-TI regained the ability to synthesize complex N-glycans, demonstrating that the glycosylation defect of RicR14 cells is due solely to the lack of GlcNAc-TI activity. With the use of specific antibodies to GlcNAc-TI, RicR14 cells were shown to synthesize an inactive GlcNAc-TI protein that is correctly localized to the Golgi apparatus. We have cloned and sequenced the open reading frame of GlcNAc-TI from parental BHK and RicR14 cells. A comparison of several RicR14 cDNA clones with the parental BHK GlcNAc-TI sequence indicated the presence of two different RicR14 cDNA species. One contained a premature stop codon at position +81, whereas the second contained a point mutation in the catalytic domain of GlcNAc-TI resulting in the amino acid substitution Gly320 → Asp. The introduction of a Gly320 → Asp mutation into wild-type rabbit GlcNAc-TI resulted in a complete loss of activity; the GlcNAc-TI mutant was correctly localized to the Golgi, indicating that the inactive GlcNAc-TI protein was transport-competent. Gly320 is conserved in GlcNAc-TI from all species so far examined. Overall these results demonstrate that Gly320 is a critical residue for GlcNAc-TI activity. The nucleotide sequence data reported will appear in DDBJ, EMBL and GenBank Nucleotide Sequence Databases under the accession numbers AF087456 and AF087457.


Author(s):  
Putthiporn Khongkaew ◽  
Phanphen Wattanaarsakit ◽  
Konstantinos I. Papadopoulos ◽  
Watcharaphong Chaemsawang

Background: Cancer is a noncommunicable disease with increasing incidence and mortality rates both worldwide and in Thailand. Its apparent lack of effective treatments is posing challenging public health issues. Introduction: Encouraging research results indicating probable anti-cancer properties of the Delonix regia flower extract (DRE) have prompted us to evaluate the feasibility of developing a type of product for future cancer prevention or treatment. Methods and Results: In the present report, using High Performance Liquid Chromatography (HPLC), we demonstrate in the DRE, the presence of high concentrations of three identifiable flavonoids, namely rutin 4.15±0.30 % w/w, isoquercitrin 3.04±0.02 %w/w, and myricetin 2.61±0.01 % w/w respectively while the IC50 of DPPH and ABTS assay antioxidation activity was 66.88±6.30 µg/ml and 53.65±7.24 µg/ml respectively. Discussion: Our cancer cell line studies using the MTT assay demonstrated DREs potent and dose dependent inhibition of murine leukemia cell line (P-388: 35.28±4.07% of cell viability remaining), as well as of human breast adenocarcinoma (MCF-7), human cervical carcinoma (HeLa), human oral cavity carcinoma (KB), and human colon carcinoma (HT-29) cell lines in that order of magnitude. Conclusion: Three identifiable flavonoids (rutin, isoquercitrin and myricetin) with high antioxidation activity and potent and dose dependent inhibition of murine leukemia cell line and five other cancer cell lines were documented in the DRE. The extract’s lack of cytotoxicity in 3 normal cell lines is a rare advantage not usually seen in current antineoplastic agents. Yet another challenge of the DRE was its low dissolution rate and long-term storage stability, issues to be resolved before a future product can be formulated.


1994 ◽  
Vol 14 (11) ◽  
pp. 7604-7610
Author(s):  
H M Pomykala ◽  
S K Bohlander ◽  
P L Broeker ◽  
O I Olopade ◽  
M O Díaz

Interstitial deletions of the short arm of chromosome 9 are associated with glioma, acute lymphoblastic leukemia, melanoma, mesothelioma, lung cancer, and bladder cancer. The distal breakpoints of the deletions (in relation to the centromere) in 14 glioma and leukemia cell lines have been mapped within the 400 kb IFN gene cluster located at band 9p21. To obtain information about the mechanism of these deletions, we have isolated and analyzed the nucleotide sequences at the breakpoint junctions in two glioma-derived cell lines. The A1235 cell line has a complex rearrangement of chromosome 9, including a deletion and an inversion that results in two breakpoint junctions. Both breakpoints of the distal inversion junction occurred within AT-rich regions. In the A172 cell line, a tandem heptamer repeat was found on either side of the deletion breakpoint junction. The distal breakpoint occurred 5' of IFNA2; the 256 bp sequenced from the proximal side of the breakpoint revealed 95% homology to long interspersed nuclear elements. One- and two-base-pair overlaps were observed at these junctions. The possible role of sequence overlaps, and repetitive sequences, in the rearrangement is discussed.


1997 ◽  
Vol 6 (3) ◽  
pp. 231-238 ◽  
Author(s):  
M.E. Truckenmiller ◽  
Ora Dillon-Carter ◽  
Carlo Tornatore ◽  
Henrietta Kulaga ◽  
Hidetoshi Takashima ◽  
...  

In vitro growth properties of three CNS-derived cell lines were compared under a variety of culture conditions. The M213-20 and J30a cell lines were each derived from embryonic CNS culture with the temperature-sensitive (ts) allele of SV40 large T antigen, tsA58, while the A7 cell line was immortalized using wild-type SV40 large T antigen. Cells immortalized with tsA58 SV40 large T proliferate at the permissive temperature, 33° C, while growth is expected to be suppressed at the nonpermissive temperature, 39.5°C. Both the M213-20 and J30a cell lines were capable of proliferating at 39.5°C continuously for up to 6 mo. All three cell lines showed no appreciable differences in growth rates related to temperature over a 7-day period in either serum-containing or defined serum-free media. The percentage of cells in S-phase of the cell cycle did not decrease or was elevated at 39.5°C for all three cell lines. After 3 wk at 39.5°C, the three cell lines also showed positive immunostaining using two monoclonal antibodies reacting with different epitopes of SV40 large T antigen. Double strand DNA sequence analyses of a 300 base pair (bp) fragment of the large T gene from each cell line, which included the ts locus, revealed mutations in both the J30a and M213-20 cell lines. The J30a cell line ts mutation had reverted to wild type, and two additional loci with bp substitutions with predicted amino acid changes were also found. While the ts mutation of the M213-20 cells was retained, an additional bp substitution with a predicted amino acid change was found. The A7 cell line sequence was identical to the reference wild-type sequence. These findings suggest that (a) nucleic acid sequences in the temperature-sensitive region of the tsA58 allele of SV40 large T are not necessarily stable, and (b) temperature sensitivity of cell lines immortalized with tsA58 is not necessarily retained.


Blood ◽  
1987 ◽  
Vol 70 (4) ◽  
pp. 1151-1160 ◽  
Author(s):  
E Paietta ◽  
RJ Stockert ◽  
T Calvelli ◽  
P Papenhausen ◽  
SV Seremetis ◽  
...  

A cell line with immature blast cell morphology was isolated from HL-60 promyelocytic leukemia cell cultures and designated HL-T. This new cell type is biphenotypic, expressing terminal transferase (TdT) together with myelomonocytoid immunologic features. TdT enzymatic activity, undetectable in HL-60, was determined to be 140 to 180 units/10(8) HL-T cells by the dGTP-assay, approximately 20% of the activity found in lymphoblastoid cell lines. HL-T predominantly synthesize the known 58- kDa TdT-protein plus a minor 54/56-kDa doublet. The 58-kDa steady state form is nonglycosylated and is phosphorylated. Precursor antigens S3.13 and MY-10, absent on HL-60, are expressed by HL-T; however, the cells are negative for HLA-Dr. Southern blot analysis by hybridization with immunoglobulin heavy chain (JH) and T cell-receptor chain gene (T beta) probes shows JH to be in the germ-line configuration in both cell lines and the T beta gene to be in germ-line in HL-60 but to be rearranged in HL-T. Truncation of the gene encoding the granulocyte-macrophage-colony- stimulating factor (GM-CSF), as found in HL-60, is not observed in HL- T. HL-T are resistant to differentiation-induction by retinoic acid and 1,25-dihydroxyvitamin D3. Cytogenetically HL-T share with HL-60 a deletion of the short arm of chromosome 9 at breakpoint p13, an aberration frequently found in patients with T cell leukemia. In addition, HL-T display t(8;9)(p11;p24) and trisomy 20. Tetraploidy is observed in 80% of HL-T metaphases with aberrations identical to those in the diploid karyotype. Like HL-60, the new line shows some surface- antigenic-T cell characteristics. Despite an antigenic pattern most consistent with that of helper-inducer T cells (T4+, D44+/-, 4B4+, 2H4- , TQ1+/-), HL-T cells and their conditioned culture medium suppress antigen, mitogen, and mixed-leukocyte-culture-mediated lymphocyte proliferation.


Blood ◽  
1997 ◽  
Vol 90 (7) ◽  
pp. 2591-2600 ◽  
Author(s):  
Roberta Morosetti ◽  
Dorothy J. Park ◽  
Alexey M. Chumakov ◽  
Isabelle Grillier ◽  
Masaaki Shiohara ◽  
...  

Human C/EBPε is a newly cloned CCAAT/enhancer-binding transcription factor. Initial studies indicated it may be an important regulator of human myelopoiesis. To elucidate the range of expression of C/EBPε, we used reverse transcription-polymerase chain reaction (RT-PCR) analysis and examined its expression in 28 hematopoietic and 14 nonhematopoietic cell lines, 16 fresh myeloid leukemia samples, and normal human hematopoietic stem cells and their mature progeny. Prominent expression of C/EBPε mRNA occurred in the late myeloblastic and promyelocytic cell lines (NB4, HL60, GFD8), the myelomonoblastic cell lines (U937 and THP-1), the early myeloblast cell lines (ML1, KCL22, MDS92), and the T-cell lymphoblastic leukemia cell lines CEM and HSB-2. For the acute promyelocytic leukemia cell line NB4, C/EBPε was the only C/EBP family member that was easily detected by RT-PCR. No C/EBPε mRNA was found in erythroid, megakaryocyte, basophil, B lymphoid, or nonhematopoietic cell lines. Most acute myeloid leukemia samples (11 of 12) from patients expressed C/EBPε. Northern blot and RT-PCR analyses showed that C/EBPε mRNA decreased when the HL60 and KG-1 myeloblast cell lines were induced to differentiate toward macrophages. Similarly, Western blot analysis showed that expression of C/EBPε protein was either unchanged or decreased slightly as the promyelocytic cell line NB4 differentiated down the macrophage-like pathway after treatment with a potent vitamin D3 analog (KH1060). In contrast, C/EBPε protein levels increased dramatically as NB4 cells were induced to differentiate down the granulocytic pathway after exposure to 9-cis retinoic acid. Furthermore, very early, normal hematopoietic stem cells (CD34+/CD38−), purified from humans had very weak expression of C/EBPε mRNA, but levels increased as these cells differentiated towards granulocytes. Likewise, purified granulocytes appeared to express higher levels of C/EBPε mRNA than purified macrophages. Addition of phosphothiolated antisense, but not sense oligonucleotides to C/EBPε, decreased clonal growth of HL-60 and NB4 cells by about 50% compared with control cultures. Taken together, our results indicate that expression of C/EBPε is restricted to hematopoietic tissues, especially myeloid cells as they differentiate towards granulocytes and inhibition of its expression in HL-60 and NB4 myeloblasts and promyelocytes decreased their proliferative capacity. Therefore, this transcriptional factor may play an important role in the process of normal myeloid development.


Sign in / Sign up

Export Citation Format

Share Document