scholarly journals Impaired natural killer cell counts and cytolytic activity in patients with severe COVID-19

2020 ◽  
Vol 4 (20) ◽  
pp. 5035-5039 ◽  
Author(s):  
Mohammed Osman ◽  
Rehan M. Faridi ◽  
Wendy Sligl ◽  
Meer-Taher Shabani-Rad ◽  
Poonam Dharmani-Khan ◽  
...  

Abstract The global pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)–driven coronavirus disease 2019 (COVID-19) has caused unprecedented human death and has seriously threatened the global economy. Early data suggest a surge in proinflammatory cytokines in patients with severe COVID-19, which has been associated with poor outcomes. We recently postulated that the inflammatory response in patients with severe COVID-19 disease is not inhibited by natural killer (NK) cells, resulting in a “cytokine storm.” Here, we assessed the NK-cell functional activity and the associated cytokines and soluble mediators in hospitalized COVID-19 patients. Significantly impaired NK-cell counts and cytolytic activity were observed in COVID-19 patients when compared with healthy controls. Also, cytokines like interleukin 12 (IL12), IL15, and IL21 that are important for NK-cell activity were not detected systematically. Serum concentrations of soluble CD25 (sCD25)/soluble IL2 receptor α (sIL2-Rα) were significantly elevated and were inversely correlated with the percentage of NK cells. Impaired NK-cell cytolytic activity together with other laboratory trends including elevated sCD25 were consistent with a hyperinflammatory state in keeping with macrophage-activation syndrome. Our findings suggest that impaired counts and cytolytic activity of NK cells are important characteristics of severe COVID-19 and can potentially facilitate strategies for immunomodulatory therapies.

1999 ◽  
Vol 276 (5) ◽  
pp. R1496-R1505
Author(s):  
Shawn G. Rhind ◽  
Greg A. Gannon ◽  
Masatoshi Suzui ◽  
Roy J. Shephard ◽  
Pang N. Shek

Natural killer (NK) cells are important in combating viral infections and cancer. NK cytolytic activity (NKCA) is often depressed during recovery from strenuous exercise. Lymphocyte subset redistribution and/or inhibition of NK cells via soluble mediators, such as prostaglandin (PG) E2 and cortisol, are suggested as mechanisms. Ten untrained (peak O2 consumption = 44.0 ± 3.5 ml ⋅ kg−1 ⋅ min−1) men completed at 2-wk intervals a resting control session and three randomized double-blind exercise trials after the oral administration of a placebo, the PG inhibitor indomethacin (75 mg/day for 5 days), or naltrexone (reported elsewhere). Circulating CD3−CD16+/56+NK cell counts, PGE2, cortisol, and NKCA were measured before, at 0.5-h intervals during, and at 2 and 24 h after a 2-h bout of cycle ergometer exercise (65% peak O2 consumption). During placebo and indomethacin conditions, exercise induced significant ( P < 0.0001) elevations of NKCA (>100%) and circulating NK cell counts (>350%) compared with corresponding control values. With placebo treatment, total NKCA was suppressed (28%; P < 0.05) 2 h after exercise, and a postexercise elevation (36%; P = 0.02) of circulating PGE2 was negatively correlated ( r = 0.475, P = 0.03) with K-562 tumor cell lysis. NK counts were unchanged in the postexercise period, but at this stage CD14+ monocyte numbers were elevated ( P < 0.0001). Indomethacin treatment eliminated the postexercise increase in PGE2 concentration and completely reversed the suppression of total and per CD16+56+NKCA 2 h after exercise. These data support the hypothesis that the postexercise reduction in NKCA reflects changes in circulating PGE2 rather than a differential lymphocyte redistribution.


1998 ◽  
Vol 275 (6) ◽  
pp. R1725-R1734 ◽  
Author(s):  
G. A. Gannon ◽  
S. G. Rhind ◽  
M. Suzui ◽  
J. Zamecnik ◽  
B. H. Sabiston ◽  
...  

This study was designed to test whether a single 50-mg dose of the opioid antagonist naltrexone hydrochloride, ingested 60 min before 2 h of moderate-intensity exercise (i.e., 65% peak O2consumption), influenced the exercise-induced augmentation of peripheral blood natural killer cell cytolytic activity (NKCA). Ten healthy male subjects were tested on four occasions separated by intervals of at least 14 days. A rested-state control trial was followed by three double-blind exercise trials [placebo (P), naltrexone (N), and indomethacin] arranged according to a random block design. The indomethacin exercise trial is discussed elsewhere (S. G. Rhind, G. A. Gannon, P. N. Shek, and R. J. Shepherd. Med. Sci. Sports Exerc. 30: S20, 1998). For both the P and N trials, plasma levels of β-endorphin were increased ( P < 0.05) at 90 and 120 min of exercise but returned to resting (preexercise) levels 2 h postexercise. CD3−CD16+CD56+NK cell counts and NKCA were significantly ( P < 0.05) elevated at each 30-min interval of exercise compared with correspondingly timed resting control values. However, there were no differences in NK cell counts or NKCA between P and N trials at any time point during the two trials. Changes in NKCA reflected mainly changes in NK cell count ( r = 0.72; P < 0.001). The results do not support the hypothesis that the enhancement of NKCA during prolonged submaximal aerobic exercise is mediated by β-endorphin.


2019 ◽  
Vol 116 (35) ◽  
pp. 17409-17418 ◽  
Author(s):  
Xuefu Wang ◽  
Rui Sun ◽  
Xiaolei Hao ◽  
Zhe-Xiong Lian ◽  
Haiming Wei ◽  
...  

Increasing evidence demonstrates that IL-17A promotes tumorigenesis, metastasis, and viral infection. Natural killer (NK) cells are critical for defending against tumors and infections. However, the roles and mechanisms of IL-17A in regulating NK cell activity remain elusive. Herein, our study demonstrated that IL-17A constrained NK cell antitumor and antiviral activity by restraining NK cell maturation. It was observed that the development and metastasis of tumors were suppressed in IL-17A–deficient mice in the NK cell-dependent manner. In addition, the antiviral activity of NK cells was also improved in IL-17A–deficient mice. Mechanistically, ablation of IL-17A signaling promoted generation of terminally mature CD27−CD11b+ NK cells, whereas constitutive IL-17A signaling reduced terminally mature NK cells. Parabiosis or mixed bone marrow chimeras from Il17a−/−and wild-type (WT) mice could inhibit excessive generation of terminally mature NK cells induced by IL-17A deficiency. Furthermore, IL-17A desensitized NK cell responses to IL-15 and suppressed IL-15–induced phosphorylation of signal transducer and activator of transcription 5 (STAT5) via up-regulation of SOCS3, leading to down-regulation of Blimp-1. Therefore, IL-17A acts as the checkpoint during NK cell terminal maturation, which highlights potential interventions to defend against tumors and viral infections.


2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Isabel Ohs ◽  
Maries van den Broek ◽  
Kathrin Nussbaum ◽  
Christian Münz ◽  
Sebastian J. Arnold ◽  
...  

Abstract Differentiation and homeostasis of natural killer (NK) cells relies on common gamma-chain (γc)-dependent cytokines, in particular IL-15. Consequently, NK cells do not develop in mice with targeted γc deletion. Herein we identify an alternative pathway of NK-cell development driven by the proinflammatory cytokine IL-12, which can occur independently of γc-signalling. In response to viral infection or upon exogenous administration, IL-12 is sufficient to elicit the emergence of a population of CD122+CD49b+ cells by targeting NK-cell precursors (NKPs) in the bone marrow (BM). We confirm the NK-cell identity of these cells by transcriptome-wide analyses and their ability to eliminate tumour cells. Rather than using the conventional pathway of NK-cell development, IL-12-driven CD122+CD49b+ cells remain confined to a NK1.1lowNKp46low stage, but differentiate into NK1.1+NKp46+ cells in the presence of γc-cytokines. Our data reveal an IL-12-driven hard-wired pathway of emergency NK-cell lymphopoiesis bypassing steady-state γc-signalling.


2018 ◽  
Author(s):  
Joseph Cursons ◽  
Fernando Souza-Fonseca-Guimaraes ◽  
Ashley Anderson ◽  
Momeneh Foroutan ◽  
Soroor Hediyeh-Zadeh ◽  
...  

AbstractAnimal models have demonstrated that natural killer (NK) cells can limit the metastatic dissemination of tumors, however their ability to combat established human tumors has been difficult to investigate.A number of computational methods have been developed for the deconvolution of immune cell types within solid tumors. We have taken the NK cell gene signatures from several tools, then curated and expanded this list using recent reports from the literature. Using a gene set scoring method to investigate RNA-seq data from The Cancer Genome Atlas (TCGA) we show that patients with metastatic cutaneous melanoma have an improved survival rate if their tumor shows evidence of greater NK cell infiltration. Furthermore, these survival effects are enhanced in tumors which have a higher expression of NK cell stimuli such as IL-15, suggesting NK cells are part of a coordinated immune response within these patients. Using this signature we then examine transcriptomic data to identify tumor and stromal components which may influence the penetrance of NK cells into solid tumors.These data support a role for NK cells in the regulation of human tumors and highlight potential survival effects associated with increased NK cell activity. Furthermore, our computational analysis identifies a number of potential targets which may help to unleash the anti-tumor potential of NK cells as we enter the age of immunotherapy.


Blood ◽  
1985 ◽  
Vol 65 (1) ◽  
pp. 65-70 ◽  
Author(s):  
HW Ziegler-Heitbrock ◽  
H Rumpold ◽  
D Kraft ◽  
C Wagenpfeil ◽  
R Munker ◽  
...  

Many patients with B-type chronic lymphocytic leukemia (CLL) exhibit a profound defect in their natural killer (NK) cell activity, the basis of which is still obscure. Hence, we analyzed the NK cells from peripheral blood samples from 11 patients with CLL for phenotype and function, after removal of the leukemic cells with a monoclonal antibody (BA-1) plus complement. Phenotypic analysis of these nonleukemic cells with monoclonal antibodies (MoAbs) against NK cells revealed that the CLL patients had higher percentages of HNK-1-positive cells (23.5% compared to controls with 14.7%). In contrast, VEP13- positive cells were absent or low in seven patients (0.8% compared to controls with 11.2%) and normal in four patients (10.5%). When testing NK cell activities against K562 or MOLT 4 target cells, patients with no or minimal numbers of VEP13-positive cells were found to be deficient, while patients with normal percentages of VEP13-positive cells had NK cell activity comparable to controls. Isolation by fluorescence-activated cell sorter of HNK-1-positive cells from patients lacking VEP13-positive cells and NK cell activity indicated that the majority of the HNK-1-positive cells in these patients had the large granular lymphocyte morphology that is characteristic of NK cells. Thus, the deficiency of NK cell activity in CLL patients appears to result from the absence of cells carrying the VEP13 marker.


1995 ◽  
Vol 78 (4) ◽  
pp. 1442-1446 ◽  
Author(s):  
J. Palmo ◽  
S. Asp ◽  
J. R. Daugaard ◽  
E. A. Richter ◽  
M. Klokker ◽  
...  

The effect of eccentric one-legged exercise on natural killer (NK) cell activity was studied in eight healthy males. To distinguish between local and systemic effects, blood samples were collected from veins in the exercising leg and resting arm. However, the results did not significantly differ between the leg and arm. To eliminate diurnal variations, the results were compared with a control group that did not exercise but had blood samples collected at the same time points. In the exercising group, plasma creatine kinase increased progressively during and up to 4 days after exercise. The percentage of CD16+ NK cells increased during exercise, which was paralleled by an increase in the NK cell activity per fixed number of blood mononuclear cells. The NK cell activity on a per NK cell basis did not change. The percentage of CD3+, CD4+, CD8+, CD19+, and CD14+ cells did not change significantly during exercise. The present study thus showed that eccentric exercise with a relatively small muscle mass (1 quadriceps femoris muscle) causes systemic effects on NK cells. It is suggested that the increase in plasma epinephrine during eccentric exercise is responsible for the observed increase in the percentage of CD16+ cells.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 889
Author(s):  
Irene Müller ◽  
Lisa Janson ◽  
Martina Sauter ◽  
Kathleen Pappritz ◽  
Sophie Van Linthout ◽  
...  

Murine models of coxsackievirus B3 (CVB3)-induced myocarditis well represent the different outcomes of this inflammatory heart disease. Previously, we found that CVB3-infected A.BY/SnJ mice, susceptible for severe acute and chronic myocarditis, have lower natural killer (NK) cell levels than C57BL/6 mice, with mild acute myocarditis. There is evidence that myeloid-derived suppressor cells (MDSC) may inhibit NK cells, influencing the course of myocarditis. To investigate the MDSC/NK interrelationship in acute myocarditis, we used CVB3-infected A.BY/SnJ mice. Compared to non-infected mice, we found increased cell numbers of MDSC in the spleen and heart of CVB3-infected A.BY/SnJ mice. In parallel, S100A8 and S100A9 were increased in the heart, spleen, and especially in splenic MDSC cells compared to non-infected mice. In vitro experiments provided evidence that MDSC disrupt cytotoxic NK cell function upon co-culturing with MDSC. MDSC-specific depletion by an anti-Ly6G antibody led to a significant reduction in the virus load and injury in hearts of infected animals. The decreased cardiac damage in MDSC-depleted mice was associated with fewer Mac3+ macrophages and CD3+ T lymphocytes and a reduced cardiac expression of S100A8, S100A9, IL-1β, IL-6, and TNF-α. In conclusion, impairment of functional NK cells by MDSC promotes the development of chronic CVB3 myocarditis in A.BY/SnJ mice.


2012 ◽  
Vol 209 (5) ◽  
pp. 947-954 ◽  
Author(s):  
Joseph C. Sun ◽  
Sharline Madera ◽  
Natalie A. Bezman ◽  
Joshua N. Beilke ◽  
Mark H. Kaplan ◽  
...  

Although natural killer (NK) cells are classified as innate immune cells, recent studies demonstrate that NK cells can become long-lived memory cells and contribute to secondary immune responses. The precise signals that promote generation of long-lived memory NK cells are unknown. Using cytokine receptor-deficient mice, we show that interleukin-12 (IL-12) is indispensible for mouse cytomegalovirus (MCMV)-specific NK cell expansion and generation of memory NK cells. In contrast to wild-type NK cells that proliferated robustly and resided in lymphoid and nonlymphoid tissues for months after MCMV infection, IL-12 receptor–deficient NK cells failed to expand and were unable to mediate protection after MCMV challenge. We further demonstrate that a STAT4-dependent IFN-γ–independent mechanism contributes toward the generation of memory NK cells during MCMV infection. Understanding the full contribution of inflammatory cytokine signaling to the NK cell response against viral infection will be of interest for the development of vaccines and therapeutics.


1997 ◽  
Vol 186 (7) ◽  
pp. 1129-1136 ◽  
Author(s):  
Simona Sivori ◽  
Massimo Vitale ◽  
Luigia Morelli ◽  
Lorenza Sanseverino ◽  
Raffaella Augugliaro ◽  
...  

Limited information is available on the surface molecules that are involved in natural killer (NK) cell triggering. In this study, we selected the BAB281 monoclonal antibody (mAb) on the basis of its ability to trigger NK-mediated target cell lysis. BAB281 identified a novel NK cell–specific surface molecule of 46 kD (p46) that is expressed by all resting or activated NK cells. Importantly, unlike the NK cell antigens identified so far, the expression of p46 was strictly confined to NK cells. Upon mAb-mediated cross-linking, p46 molecules induced strong cell triggering leading to [Ca2+]i increases, lymphokine production, and cytolytic activity both in resting NK cells and NK cell clones. The p46-mediated induction of Ca2+ increases or triggering of cytolytic activity was downregulated by the simultaneous engagement of inhibitory receptors including p58, p70, and CD94/NKG2A. Both the unique cellular distribution and functional capability of p46 molecules suggest a possible role in the mechanisms of non-major histocompatibility complex–restricted cytolysis mediated by human NK cells.


Sign in / Sign up

Export Citation Format

Share Document