scholarly journals CAMK2G is identified as a novel therapeutic target for myelofibrosis

Author(s):  
Masashi Miyauchi ◽  
Ken Sasaki ◽  
Yuki Kagoya ◽  
Kazuki Taoka ◽  
Yosuke Masamoto ◽  
...  

Although JAK1/2 inhibition is effective into alleviating symptoms of myelofibrosis (MF), it does not result in the eradication of MF clones, which can lead to inhibitor-resistant clones emerging during the treatment. Here we established iPS cells derived from MF patient samples (MF-iPSCs) harboring JAK2 V617F, CALR type 1, or CALR type 2 mutations. We demonstrated that these cells faithfully recapitulate the drug sensitivity of the disease. These cells were utilized for chemical screening and calcium/calmodulin-dependent protein kinase 2 (CAMK2) was identified as a promising therapeutic target. MF model cells and mice induced by MPL W515L, another type of mutations recurrently detected in MF patients were used to elucidate the therapeutic potential of CAMK2 inhibition. CAMK2 inhibition was effective against JAK2 inhibitor-sensitive and JAK2 inhibitor-resistant cells. Further research revealed CAMK2 gamma subtype was important in MF model cells induced by MPL W515L. We showed that CAMK2G hetero knockout in the primary bone marrow cells expressing MPL W515Ldecreased colony-forming capacity. CAMK2G inhibition with berbamine, a CAMK2G inhibitor, significantly prolonged survival and reduced disease phenotypes such as splenomegaly and leukocytosis in a MF mouse model induced by MPL W515L. We investigated the molecular mechanisms underlying the therapeutic effect of CAMK2G inhibition and found that CAMK2G is activated by MPL signaling in MF model cells and is an effector in the MPL-JAK2 signaling pathway in these cells. These results indicate CAMK2G plays an important role in MF, and CAMK2G inhibition may be a novel therapeutic strategy that overcomes resistance to JAK1/2 inhibition.

2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Shohei Ikeda ◽  
Kimio Satoh ◽  
Nobuhiro Kikuchi ◽  
Satoshi Miyata ◽  
Kota Suzuki ◽  
...  

Rationale: Right ventricular (RV) failure is the leading cause of death in various cardiopulmonary diseases, including pulmonary hypertension. It is generally considered that the RV is vulnerable to pressure-overload as compared with the left ventricle (LV). However, as compared with LV failure, the molecular mechanisms of RV failure are poorly understood. Objective: We aimed to identify molecular therapeutic targets for RV failure in a mouse model of pressure-overload. Methods and Results: To induce pressure-overload to respective ventricles, we performed pulmonary artery constriction (PAC) or transverse aortic constriction (TAC) in mice. We first performed microarray analysis and found that the molecules related to RhoA/Rho-kinase and integrin pathways were significantly up-regulated in the RV with PAC compared with the LV with TAC. Then, we examined the responses of both ventricles to chronic pressure-overload in vivo. We demonstrated that compared with TAC, PAC caused greater extents of mortality, Rho-kinase expression (especially ROCK2 isoform) and oxidative stress in pressure-overloaded RV, reflecting the weakness of the RV in response to pressure-overload. Additionally, mechanical stretch of RV cardiomyocytes from rats immediately up-regulated ROCK2 expression (not ROCK1), suggesting the specific importance of ROCK2 in stretch-induced responses of RV tissues. Furthermore, mice with myocardial-specific overexpression of dominant-negative Rho-kinase (DN-RhoK) showed resistance to pressure-overload-induced hypertrophy and dysfunction associated with reduced oxidative stress. Finally, DN-RhoK mice showed a significantly improved long-term survival in both PAC and TAC as compared with littermate controls. Conclusions: These results indicate that the Rho-kinase pathway plays a crucial role in RV hypertrophy and dysfunction, suggesting that the pathway is a novel therapeutic target of RV failure in humans.


Author(s):  
Mansi Verma ◽  
Sujata Basu ◽  
Manisha Singh ◽  
Rachana R. ◽  
Simrat Kaur ◽  
...  

Parkinson's disease (PD) has been reported to be the most common neurodegenerative diseases all over the world. Several proteins are associated and responsible for causing PD. One such protein is α-synuclein. This chapter discusses the role of α-synuclein in PD. Various genetic and epigenetic factors, which cause structural and functional changes for α-synuclein, have been described. Several molecular mechanisms, which are involved in regulating mitochondrial and lysosomal related pathways and are linked to α-synuclein, have been discussed in detail. The knowledge gathered is further discussed in terms of using α-synuclein as a diagnostic marker for PD and as a novel therapeutic target for the same.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4107-4107 ◽  
Author(s):  
Yohei Nakaya ◽  
Haruna Naito ◽  
Junko Homan ◽  
Seishi Sugahara ◽  
Tatsuya Horio ◽  
...  

Abstract Abstract 4107 A somatic point mutation of Janus Kinase 2 (JAK2) tyrosine kinase (JAK2 V617F) has been shown to occur at a high frequency in myeloproliferative neoplasm (MPN) patients. JAK2 V617F is a constitutively activated kinase that activates the JAK/STAT signaling pathway and dysregulates cell growth and function. These findings suggest that the inhibition of aberrant JAK2 activation has a therapeutic benefit. Our novel JAK2 inhibitor, NS-018, is highly active against JAK2 with an IC50 value of less than 1 nM, and it has 30–50-fold selectivities for JAK2 over other JAK-family kinases such as JAK1, JAK3 and Tyk2. We determined the X-ray structure of JAK2 in complex with NS-018. An Asp-Phe-Gly (DFG) motif is located at the N-terminus of the activation loop and regulates ATP binding. The resolved X-ray structure showed that NS-018 bound to JAK2 in the “DFG-in” active conformation. A molecular modeling study indicated that NS-018 would hardly bind to JAK2 in the “DFG-out” inactive conformation. In accordance with the structural analysis, NS-018 preferentially suppressed the growth of bone-marrow cells expressing activated JAK2. Thus, NS-018 reduced in a dose-dependent manner the number of erythroid colony-forming units (CFU-E) derived from bone-marrow cells taken from JAK2 V617F transgenic mice, but had only a limited effect on the number of colonies from wild-type mice (Figure A). NS-018 had no effect on the number of granulocyte-macrophage colony-forming units (CFU-GM) from either mouse strain. Furthermore, NS-018 showed potent antiproliferative activity against Ba/F3 cells expressing JAK2 V617F with an IC50 value of <100 nM but showed only minimal cytotoxicity against most other hematopoietic and non-hematopoietic cell lines (IC50 >3 μ M). In a mouse Ba/F3-JAK2 V617F leukemia model, NS-018 significantly prolonged survival during repeated oral administrations at 6.25 mg/kg bid and reduced splenomegaly at doses as low as 1.5 mg/kg bid. NS-018 was well tolerated at dosages of more than 100 mg/kg bid. In conclusion, NS-018 is a potent JAK2 inhibitor which preferentially inhibits an activated form of JAK2 and has potent in vitro and in vivo efficiency in preclinical studies. NS-018 is expected to be suitable for the treatment of MPN caused by aberrant JAK2 activation and its effectiveness will be verified by early-phase clinical investigations in the near future. JAK2 V617F preferential inhibition of erythrocyte colony growth Bone-marrow cells were collected from femurs of JAK2 V617F transgenic mice and same-strain BDF1 wild-type mice. (a) To detect CFU-E colonies, cells were treated with NS-018 in semisolid methylcellulose containing erythropoietin (EPO) and cell clusters were counted after incubation for two days. (b) To detect CFU-GM colonies, cells were treated with NS-018 in semisolid methylcellulose containing EPO, interleukin-3 (IL-3), IL-6 and stem cell factor and colonies were counted on day 7. Disclosures: Nakaya: Nippon Shinyaku Co., Ltd: Employment. Naito:Nippon Shinyaku Co., Ltd: Employment. Homan:Nippon Shinyaku Co., Ltd: Employment. Sugahara:Nippon Shinyaku Co., Ltd: Employment. Horio:Nippon Shinyaku Co., Ltd: Employment. Niwa:Nippon Shinyaku Co., Ltd: Employment. Shimoda:Nippon Shinyaku Co., Ltd: Research Funding.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shihan Xu ◽  
Tingwei Zhang ◽  
Zhengguo Cao ◽  
Wenjie Zhong ◽  
Chuangwei Zhang ◽  
...  

Integrins refer to heterodimers consisting of subunits α and β. They serve as receptors on cell membranes and interact with extracellular ligands to mediate intracellular molecular signals. One of the least-studied members of the integrin family is integrin-α9β1, which is widely distributed in various human tissues and organs. Integrin-α9β1 regulates the physiological state of cells through a variety of complex signaling pathways to participate in the specific pathological processes of some intractable diseases. In recent years, an increasing amount of research has focused on the role of α9β1 in the molecular mechanisms of different refractory diseases and its promising potential as a therapeutic target. Accordingly, this review introduces and summarizes recent research related to integrin-α9β1, describes the synergistic functions of α9β1 and its corresponding ligands in cancer, autoimmune diseases, nerve injury and thrombosis and, more importantly, highlights the potential of α9β1 as a distinctive target for the treatment of these intractable diseases.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3054-3054
Author(s):  
Masashi Miyauchi ◽  
Ken Sasaki ◽  
Kazuki Taoka ◽  
Yosuke Masamoto ◽  
Sho Yamazaki ◽  
...  

Abstract Myelofibrosis (MF) is a myeloproliferative neoplasm characterized by megakaryocytic atypia, fibrosis in bone marrow, and extramedullary hematopoiesis. Although mutational analyses reveal that about 90% of patients with primary MF harbor JAK2, CALR or MPL mutation that constitutively activates JAK-STAT pathway, the outcome of JAK2 inhibitor treatment for MF patients still remains to be improved. However, only a limited number of humanized disease-models are currently available to develop a novel therapeutic strategy for MF. We have previously reported that induced pluripotent stem cells (iPSCs) established from MF patients (MF-iPSCs) by using retroviral vectors recapitulated the disease phenotype (Hosoi et al. 2014), indicating that MF-iPSCs are one of the useful humanized disease-models of MF. We established iPSCs from three MF patients harboring a JAK2 V617F, CALR type 1, or CALR type 2 mutations by using integration-free episomal vectors and confirmed that established MF-iPSCs harbored the identical mutations to parental cells. After hematopoietic differentiation, we obtained hematopoietic progenitor cells (HPCs) immunophenotypically defined as CD34+/CD43+ cells. Viability assays revealed that JAK2 inhibitors (Ruxolitinib and HSP90) impaired cell survival of MF-HPCs compared to normal-HPCs, suggesting that MF-HPCs also reproduce drug-sensitivity. To investigate therapeutic targets of MF, we optimized culture condition of HPCs to perform compound screening. By the use of small chemical library containing 192 compounds and two MF-iPSCs harboring a JAK2 or CALR mutation, we identified KN93, calcium/calmodulin dependent protein kinase (CAMK) 2 inhibitor, as a compound which inhibited the viability of MF-HPCs from all three patients in dose-dependent manner, compared to normal-HPCs. For validation, we used Trifluoperazine (TFP), another CAMK inhibitor and TFP had similar inhibitory effects on MF-HPCs. In Ba/F3 mouse cell line ectopically expressing MPL W515L mutant (Ba/F3 MPLmu ;IC50 of ruxolitinib = 112 nM) as other models mimicking MF than that using JAK2 mutant and CALR mutant, KN93 and TFP decreased cell growth, induced apoptosis, and suppressed the phosphorylation of Stat5, a major signaling event in MF, indicating that CAMK2 is a candidate of therapeutic target for MF. To determine the critical subtype of CAMK2 in MF, we assessed the expression of CAMK2 subtypes. In Ba/F3 MPLmu, Camk2 gamma subtype (Camk2g) was detectable among all Camk2 subtypes in mRNA levels and phosphorylation of CAMK2G protein was enhanced at the absence of interluekin-3. Knock down of CAMK2G by short-hairpin RNA decreased cell growth of Ba/F3 MPLmu. Moreover, berbamine, a CAMK2G inhibitor, also inhibited the viability of Ba/F3 MPLmu and colony forming capacity of c-kit+ primary mouse bone marrow ectopically expressing MPLW515L compared to that of expressing wild type MPL at dose-dependent manner, suggesting that CAMK2G is a critical subtype of CAMK2 in MF. To address whether CAMK2 inhibition overcome the JAK2 inhibitor-resistance, one of the reason why JAK2 inhibitor is not efficient in clinical setting, we established ruxolitinib-resistant Ba/F3_MPLmu (Ba/F3_MPLmu_R; IC50 of ruxolitinib = 642 nM) cells through one-month exposure to ruxolitinib. KN93 and TFP decreased cell growth, induced apoptosis, and suppressed the phosphorylation of Stat5 in Ba/F3_MPLmu_R and combination of CAMK2 inhibitors and ruxolitinib exhibited inhibitory effects more efficiently than single agent, suggesting that CAMK2 inhibitors show a cooperative effect with ruxolitinib against MF cells and have the potential to overcome JAK2 inhibitor-resistance. To address the effectiveness of CAMK2 inhibition in primary samples, we used CD34+ cells isolated from peripheral blood mononuclear cells of MF patients. Although either KN93 or ruxolitinib inhibited the colony forming capacity of primary MF cells with similar efficiency, combination of KN93 with ruxolitinib showed cooperative inhibition. Taken together, these findings indicate that CAMK2G would be a therapeutic target of MF patients. In conclusion, MF-iPSCs enable comparable compound screening assay and identify CAMK2G as a potential therapeutic target of MF. Our results revealed that CAMK2G inhibition could lead the novel therapeutic strategies to combine with JAK2 inhibitors and to overcome the resistance against JAK2 inhibitors. Disclosures Arai: Novartis: Research Funding. Kurokawa:Kyowa Hakko Kirin: Honoraria, Research Funding; Astellas Pharma: Research Funding; Sumitomo Dainippon Pharma: Research Funding; Takeda Pharmaceutical: Research Funding; Eizai: Research Funding; Pfizer: Research Funding; Nippon Sinyaku: Honoraria, Research Funding; Ono Pharmaceutical: Honoraria, Research Funding; Chugai Pharmaceutical: Research Funding; MSD: Honoraria, Research Funding; Otsuka Pharmaceutical: Research Funding; Teijin Pharma: Research Funding.


2020 ◽  
Vol 295 (52) ◽  
pp. 17973-17985
Author(s):  
Gabriela Vilema-Enríquez ◽  
Robert Quinlan ◽  
Peter Kilfeather ◽  
Roberta Mazzone ◽  
Saba Saqlain ◽  
...  

The molecular mechanisms of reduced frataxin (FXN) expression in Friedreich's ataxia (FRDA) are linked to epigenetic modification of the FXN locus caused by the disease-associated GAA expansion. Here, we identify that SUV4-20 histone methyltransferases, specifically SUV4-20 H1, play an important role in the regulation of FXN expression and represent a novel therapeutic target. Using a human FXN–GAA–Luciferase repeat expansion genomic DNA reporter model of FRDA, we screened the Structural Genomics Consortium epigenetic probe collection. We found that pharmacological inhibition of the SUV4-20 methyltransferases by the tool compound A-196 increased the expression of FXN by ∼1.5-fold in the reporter cell line. In several FRDA cell lines and patient-derived primary peripheral blood mononuclear cells, A-196 increased FXN expression by up to 2-fold, an effect not seen in WT cells. SUV4-20 inhibition was accompanied by a reduction in H4K20me2 and H4K20me3 and an increase in H4K20me1, but only modest (1.4–7.8%) perturbation in genome-wide expression was observed. Finally, based on the structural activity relationship and crystal structure of A-196, novel small molecule A-196 analogs were synthesized and shown to give a 20-fold increase in potency for increasing FXN expression. Overall, our results suggest that histone methylation is important in the regulation of FXN expression and highlight SUV4-20 H1 as a potential novel therapeutic target for FRDA.


2019 ◽  
Vol 10 (3) ◽  
pp. 1263-1279 ◽  
Author(s):  
Siyu Wang ◽  
Min-Hsiung Pan ◽  
Wei-Lun Hung ◽  
Yen-Chen Tung ◽  
Chi-Tang Ho

The global incidence of obesity and its complications continue to rise along with a demand for novel therapeutic approaches.


2015 ◽  
Vol 16 (2) ◽  
pp. 336-345 ◽  
Author(s):  
Yashwanth Subbannayya ◽  
Nazia Syed ◽  
Mustafa A Barbhuiya ◽  
Remya Raja ◽  
Arivusudar Marimuthu ◽  
...  

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3212-3212
Author(s):  
Peter P. Sayeski ◽  
Shireen Vali ◽  
Ansu Kumar ◽  
Sung Park ◽  
Neeraj Kumar Singh ◽  
...  

Abstract Background: Currently approved therapies for myeloproliferative neoplasms (MPNs) are limited to cytoreductive agents such as hydroxyurea and the Jak1/2 inhibitor ruxolitinib. While these agents alleviate constitutional symptoms, they are unable to provide significant histopathologic, cytogenetic, or molecular remissions. Furthermore, adverse events and drug resistance are associated with these frontline therapies. This therefore warrants the design of novel therapies that can provide efficacy, either alone or as adjuvants, while minimizing adverse events and resistance. To address this, we developed predictive simulation software to create patient simulation avatars based on signaling networks impacted by hyper-kinetic JAK2 signaling. The avatars can then be simulated with FDA approved drugs from across indications, individually or in combinations, with the intent of identifying novel therapies for MPN. Methods: A bone marrow aspirate from a PV patient was analyzed for chromosomal alterations using array Comparative Genomic Hybridization (aCGH) and peripheral blood from the same patient was analyzed for cytokine expression levels. The bone marrow cells were positive for the JAK2-V617F mutation in 44.7% of cells. aCGH analysis of bone marrow and peripheral blood cells did not identify other genomic aberrations. Cytokine profiling indicated an increase in MMP9, RANTES (CCL5) and VEGF, and a decrease in MCP1, relative to a non-diseased control sample. Using this information, a predictive simulation patient avatar was created. A library of over 75 FDA approved agents with unique mechanism of actions was then simulated against the patient avatar. A list of predicted drugs was then generated and subsequently validated using i) BaF3/Jak2-V617F cells, ii) bone marrow mononuclear cells derived from the patient, and iii) an animal model of Jak2-mediated MPN. Results: The predictive simulation indicated synergistic efficacy of two drugs: roflumilast and chloroquine. The combination of inhibiting PDE4 and autophagy using roflumilast and choloroquine, respectively, was predicted to reduce proliferation and viability of JAK2-V617F cells which have hyper-activated JAK2, STAT3, and STAT5. Roflumilast was predicted to reduce the dominance of ERK, NF-kB, SHH pathways, and induce CDKN1A and CDKN1B, cell cycle inhibitors. Choloroquine was predicted to induce ROS, ER Stress, TP53, ceramide biosynthesis, and cell cycle inhibition. The combination of the two, through different mechanisms, was predicted to reduce proliferation and viability of mutant JAK2 cells. Furthermore, they were predicted to synergize with the action of low dose ruxolitinib. To validate the simulation predictions, we first treated BaF3/Jak2-V617F cells with increasing concentrations of roflumilast (0 – 30 μM) and chloroquine (0 – 30 μM). We found that both agents significantly reduced the viability of the cells in a dose-dependent manner, both alone and in combination. When the patient’s bone marrow cells were similarly treated with roflumilast (0 – 20 μM) and chloroquine (0 – 20 μM), the numbers of BFU-E were reduced dose-dependently. Furthermore, when roflumilast (10 – 20 μM) and chloroquine (10 - 20 μM) were used in combination with low dose ruxolitinib (100 nM), there was a synergistic effect leading to the near elimination of mutant clonogenic growth potentials of the patient’s cells (44±4.24 BFU-E for vehicle vs. 3±2.83 BFU-E for 20 μM Rof/20 μM Chloro/100 nM Rux). Lastly, when BaF3/Jak2-V617F cells were xenografted into nude mice, roflumilast (8 mg/kg/day) and chloroquine (50 mg/kg/day) were highly effective when used in combination as measured by an improved red blood cell count, reduced splenomegaly, and a decreased tumor burden within the liver. Conclusions: This study demonstrates how predictive simulation technology can be used to identify novel therapeutic strategies for the treatment of MPN. Specifically, genomic and cytokine profiling were used to map dysregulated signaling pathways and then accurately predict novel therapeutic agents that can act either alone, in combination, or as an adjuvant to an existing therapy. The results from this study are significant as they i) serve as the basis for an early phase clinical trial using roflumilast and chloroquine for the treatment of PV and ii) have validated a novel means to rapidly re-purpose existing FDA approved drugs for the treatment of MPN. Disclosures Sayeski: CellWorks: Research Funding. Off Label Use: Roflumilast and choloroquine were used for the treatment of MPN. . Vali:CellWorks: Employment. Kumar:CellWorks: Employment. Singh:CellWorks: Employment. Tyagi:CellWorks: Employment. Abbasi:CellWorks: Employment, Equity Ownership.


Sign in / Sign up

Export Citation Format

Share Document