IL18 induces p38 MAP kinase activation and adhesion capacities in BMPRII knocked down human lung microvascular endothelial cells

Author(s):  
Leanda Vengethasamy ◽  
Rik Gijsbers ◽  
Annelies Michiels ◽  
Birger Tielemans ◽  
Allard Wagenaar ◽  
...  
2005 ◽  
Vol 288 (2) ◽  
pp. L359-L369 ◽  
Author(s):  
Qin Wang ◽  
Michael Yerukhimovich ◽  
William A. Gaarde ◽  
Ian J. Popoff ◽  
Claire M. Doerschuk

Previous studies demonstrated that neutrophil adherence induces ICAM-1-dependent cytoskeletal changes in TNF-α-treated pulmonary microvascular endothelial cells that are prevented by a pharmacological inhibitor of p38 MAP kinase. This study determined whether neutrophil adherence induces activation of p38 MAP kinase in endothelial cells, the subcellular localization of phosphorylated p38, which MAP kinase kinases lead to p38 activation, which p38 isoform is activated, and what the downstream targets may be. Confocal microscopy showed that neutrophil adhesion for 2 or 6 min induced an increase in phosphorylated p38 in endothelial cells that was punctate and concentrated in the central region of the endothelial cells. Studies using small interfering RNA (siRNA) to inhibit the protein expression of MAP kinase kinase 3 and 6, either singly or in combination, showed that both MAP kinase kinases were required for p38 phosphorylation. Studies using an antisense oligonucleotide to p38α demonstrated that inhibition of the protein expression of p38α 1) inhibited activation of p38 MAP kinase without affecting the protein expression of p38β; 2) prevented phosphorylation of heat shock protein 27, an actin binding protein that may induce actin polymerization upon phosphorylation; 3) attenuated cytoskeletal changes; and 4) attenuated neutrophil migration to the EC borders. Thus MAP kinase kinase3- and 6-dependent activation of the α-isoform of p38 MAP kinase is required for the cytoskeletal changes induced by neutrophil adherence and influences subsequent neutrophil migration toward endothelial cell junctions.


2020 ◽  
Vol 40 (5) ◽  
pp. 1195-1206 ◽  
Author(s):  
Danting Cao ◽  
Andrew M. Mikosz ◽  
Alexandra J. Ringsby ◽  
Kelsey C. Anderson ◽  
Erica L. Beatman ◽  
...  

Objective: MicroRNA-126-3p (miR-126) is required for angiogenesis during organismal development or the repair of injured arterial vasculature. The role of miR-126 in lung microvascular endothelial cells, which are essential for gas exchange and for lung injury repair and regeneration, remains poorly understood. Considering the significant heterogeneity of endothelial cells from different vascular beds, we aimed to determine the role of miR-126 in regulating lung microvascular endothelial cell function and to elucidate its downstream signaling pathways. Approach and Results: Overexpression and knockdown of miR-126 in primary human lung microvascular endothelial cells (HLMVEC) were achieved via transfections of miR-126 mimics and antisense inhibitors. Increasing miR-126 levels in HLMVEC reduced cell proliferation, weakened tube formation, and increased cell apoptosis, whereas decreased miR-126 levels stimulated cell proliferation and tube formation. Whole-genome RNA sequencing revealed that miR-126 was associated with an antiangiogenic and proapoptotic transcriptomic profile. Using validation assays and knockdown approaches, we identified that the effect of miR-126 on HLMVEC angiogenesis was mediated by the LAT1 (L-type amino acid transporter 1), via regulation of mTOR (mammalian target of rapamycin) signaling. Furthermore, downregulation of miR-126 in HLMVEC inhibited cell apoptosis and improved endothelial tube formation during exposure to environmental insults such as cigarette smoke. Conclusions: miR-126 inhibits HLMVEC angiogenic function by targeting the LAT1-mTOR signaling axis, suggesting that miR-126 inhibition may be useful for conditions associated with microvascular loss, whereas miR-126 augmentation may help control unwanted microvascular angiogenesis.


Sign in / Sign up

Export Citation Format

Share Document