scholarly journals TNFα induces inflammatory stress response in microvascular endothelial cells via Akt- and P38 MAP kinase-mediated thrombospondin-1 expression

2015 ◽  
Vol 406 (1-2) ◽  
pp. 227-236 ◽  
Author(s):  
Arwa Fairaq ◽  
Anna Goc ◽  
Sandeep Artham ◽  
Harika Sabbineni ◽  
Payaningal R. Somanath
2005 ◽  
Vol 288 (2) ◽  
pp. L359-L369 ◽  
Author(s):  
Qin Wang ◽  
Michael Yerukhimovich ◽  
William A. Gaarde ◽  
Ian J. Popoff ◽  
Claire M. Doerschuk

Previous studies demonstrated that neutrophil adherence induces ICAM-1-dependent cytoskeletal changes in TNF-α-treated pulmonary microvascular endothelial cells that are prevented by a pharmacological inhibitor of p38 MAP kinase. This study determined whether neutrophil adherence induces activation of p38 MAP kinase in endothelial cells, the subcellular localization of phosphorylated p38, which MAP kinase kinases lead to p38 activation, which p38 isoform is activated, and what the downstream targets may be. Confocal microscopy showed that neutrophil adhesion for 2 or 6 min induced an increase in phosphorylated p38 in endothelial cells that was punctate and concentrated in the central region of the endothelial cells. Studies using small interfering RNA (siRNA) to inhibit the protein expression of MAP kinase kinase 3 and 6, either singly or in combination, showed that both MAP kinase kinases were required for p38 phosphorylation. Studies using an antisense oligonucleotide to p38α demonstrated that inhibition of the protein expression of p38α 1) inhibited activation of p38 MAP kinase without affecting the protein expression of p38β; 2) prevented phosphorylation of heat shock protein 27, an actin binding protein that may induce actin polymerization upon phosphorylation; 3) attenuated cytoskeletal changes; and 4) attenuated neutrophil migration to the EC borders. Thus MAP kinase kinase3- and 6-dependent activation of the α-isoform of p38 MAP kinase is required for the cytoskeletal changes induced by neutrophil adherence and influences subsequent neutrophil migration toward endothelial cell junctions.


2005 ◽  
Vol 280 (23) ◽  
pp. 22172-22180 ◽  
Author(s):  
Joseph N. McLaughlin ◽  
Maria R. Mazzoni ◽  
John H. Cleator ◽  
Laurie Earls ◽  
Ana Luisa Perdigoto ◽  
...  

Thrombospondin-1 (THBS1) is a large extracellular matrix glycoprotein that affects vasculature systems such as platelet activation, angiogenesis, and wound healing. Increases in THBS1 expression have been liked to disease states including tumor progression, atherosclerosis, and arthritis. The present study focuses on the effects of thrombin activation of the G-protein-coupled, protease-activated receptor-1 (PAR-1) on THBS1 gene expression in the microvascular endothelium. Thrombin-induced changes in gene expression were characterized by microarray analysis of ∼11,000 different human genes in human microvascular endothelial cells (HMEC-1). Thrombin induced the expression of a set of at least 65 genes including THBS1. Changes in THBS1 mRNA correlated with an increase in the extracellular THBS1 protein concentration. The PAR-1-specific agonist peptide (TFLLRNK-PDK) mimicked thrombin stimulation of THBS1 expression, suggesting that thrombin signaling is through PAR-1. Further studies showed THBS1 expression was sensitive to pertussis toxin and protein kinase C inhibition indicating Gi/o- and Gq-mediated pathways. THBS1 up-regulation was also confirmed in human umbilical vein endothelial cells stimulated with thrombin. Analysis of the promoter region of THBS1 and other genes of similar expression profile identified from the microarray predicted an EBOX/EGRF transcription model. Expression of members of each family, MYC and EGR1, respectively, correlated with THBS1 expression. These results suggest thrombin formed at sites of vascular injury increases THBS1 expression into the extracellular matrix via activation of a PAR-1, Gi/o, Gq, EBOX/EGRF-signaling cascade, elucidating regulatory points that may play a role in increased THBS1 expression in disease states.


1997 ◽  
Vol 138 (3) ◽  
pp. 707-717 ◽  
Author(s):  
David W. Dawson ◽  
S. Frieda A. Pearce ◽  
Ruiqin Zhong ◽  
Roy L. Silverstein ◽  
William A. Frazier ◽  
...  

Thrombospondin-1 (TSP-1) is a naturally occurring inhibitor of angiogenesis that is able to make normal endothelial cells unresponsive to a wide variety of inducers. Here we use both native TSP-1 and small antiangiogenic peptides derived from it to show that this inhibition is mediated by CD36, a transmembrane glycoprotein found on microvascular endothelial cells. Both IgG antibodies against CD36 and glutathione-S-transferase–CD36 fusion proteins that contain the TSP-1 binding site blocked the ability of intact TSP-1 and its active peptides to inhibit the migration of cultured microvascular endothelial cells. In addition, antiangiogenic TSP-1 peptides inhibited the binding of native TSP-1 to solid phase CD36 and its fusion proteins, as well as to CD36-expressing cells. Additional molecules known to bind CD36, including the IgM anti-CD36 antibody SM∅, oxidized (but not unoxidized) low density lipoprotein, and human collagen 1, mimicked TSP-1 by inhibiting the migration of human microvascular endothelial cells. Transfection of CD36-deficient human umbilical vein endothelial cells with a CD36 expression plasmid caused them to become sensitive to TSP-1 inhibition of their migration and tube formation. This work demonstrates that endothelial CD36, previously thought to be involved only in adhesion and scavenging activities, may be essential for the inhibition of angiogenesis by thrombospondin-1.


Cancers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1737 ◽  
Author(s):  
Samson Mathews Samuel ◽  
Noothan Jyothi Satheesh ◽  
Suparna Ghosh ◽  
Dietrich Büsselberg ◽  
Yasser Majeed ◽  
...  

Metformin, the most widely used anti-diabetic drug, also exhibits anti-cancer properties; however, the true potential of metformin as an anticancer drug remains largely unknown. In this study using mouse microvascular endothelial cells (MMECs), we investigated the effects of metformin alone or in combination with the glycolytic inhibitor, 2-deoxyglucose (2DG), on angiogenesis-a process known to be an integral part of tumor growth, cancer cell survival and metastasis. MMECs were exposed to 2DG (1–10 mM) for 48 h in the absence or presence of metformin (2 mM). The status of angiogenic and anti-angiogenic marker proteins, proteins of the mTOR pathway and cell-cycle-related proteins were quantified by Western blot analysis. Assays for cell proliferation, migration and tubulogenesis were also performed. We observed robust up-regulation of anti-angiogenic thrombospondin-1 (TSP1) and increased TSP1-CD36 co-localization with a marked decrease in the levels of phosphorylated vascular endothelial growth factor receptor-2 (pVEGFR2; Y1175) in 2DG (5 mM) exposed cells treated with metformin (2 mM). Additionally, treatment with metformin and 2DG (5 mM) inhibited the Akt/mTOR pathway and down-regulated the cell-cycle-related proteins such as p-cyclin B1 (S147) and cyclins D1 and D2 when compared to cells that were treated with either 2DG or metformin alone. Treatment with a combination of 2DG (5 mM) and metformin (2 mM) also significantly decreased cell proliferation, migration and tubulogenic capacity when compared to cells that were treated with either 2DG or metformin alone. The up-regulation of TSP1, inhibition of cell proliferation, migration and tubulogenesis provides support to the argument that the combination of metformin and 2DG may prove to be an appropriate anti-proliferative and anti-angiogenic therapeutic strategy for the treatment of some cancers.


Sign in / Sign up

Export Citation Format

Share Document