scholarly journals Comparative genomics among Saccharomyces cerevisiae × Saccharomyces kudriavzevii natural hybrid strains isolated from wine and beer reveals different origins

BMC Genomics ◽  
2012 ◽  
Vol 13 (1) ◽  
pp. 407 ◽  
Author(s):  
David Peris ◽  
Christian A Lopes ◽  
Carmela Belloch ◽  
Amparo Querol ◽  
Eladio Barrio
2008 ◽  
Vol 74 (8) ◽  
pp. 2314-2320 ◽  
Author(s):  
Sara S. González ◽  
Eladio Barrio ◽  
Amparo Querol

ABSTRACT We analyzed 24 beer strains from different origins by using PCR-restriction fragment length polymorphism analysis of different gene regions, and six new Saccharomyces cerevisiae × Saccharomyces kudriavzevii hybrid strains were found. This is the first time that the presence in brewing of this new type of hybrid has been demonstrated. From the comparative molecular analysis of these natural hybrids with respect to those described in wines, it can be concluded that these originated from at least two hybridization events and that some brewing hybrids share a common origin with wine hybrids. Finally, a reduction of the S. kudriavzevii fraction of the hybrid genomes was observed, but this reduction was found to vary among hybrids regardless of the source of isolation. The fact that 25% of the strains analyzed were discovered to be S. cerevisiae × S. kudriavzevii hybrids suggests that an important fraction of brewing strains classified as S. cerevisiae may correspond to hybrids, contributing to the complexity of Saccharomyces diversity in brewing environments. The present study raises new questions about the prevalence of these new hybrids in brewing as well as their contribution to the properties of the final product.


2020 ◽  
Vol 16 (9) ◽  
Author(s):  
Cheng Xu ◽  
Hui Xia ◽  
Shuwen Zhang ◽  
Yuping Zhao ◽  
Zhiqiang Qi ◽  
...  

AbstractIn this study, yeast was isolated from cherry wine lees by rose Bengal medium, and its species was identified through three-stage screening, morphological observation and molecular biological identification. Moreover, the tolerance of screened strains was studied. The results showed that 30 strains of yeast were isolated from cherry wine lees, and five strains of yeast were selected, which were named YJN10, YJN16, YJN18, YJN19 and YJN28. After preliminary appraisal, strain YJN10 was Saccharomyces kudriavzevii, strain YJN16 was Saccharomyces paradoxus, and strains YJN18, YJN19, YJN28 were Saccharomyces cerevisiae. In the tolerance study, the tolerable sugar concentrations of the five strains were 650, 650, 550, 600 and 600 g/L. The tolerable alcohol volume fractions were 20, 20, 16, 18 and 18%. The tolerable molar concentration of potassium chloride was 1.8, 1.8, 1.5, 1.5 and 1.5 mol/L. Finally, strains YJN10, YJN16, YJN19 and YJN28 showed good tolerance, which laid a foundation for subsequent application in cherry wine fermentation.


2016 ◽  
Vol 113 (52) ◽  
pp. 15060-15065 ◽  
Author(s):  
Niels G. A. Kuijpers ◽  
Daniel Solis-Escalante ◽  
Marijke A. H. Luttik ◽  
Markus M. M. Bisschops ◽  
Francine J. Boonekamp ◽  
...  

Recent developments in synthetic biology enable one-step implementation of entire metabolic pathways in industrial microorganisms. A similarly radical remodelling of central metabolism could greatly accelerate fundamental and applied research, but is impeded by the mosaic organization of microbial genomes. To eliminate this limitation, we propose and explore the concept of “pathway swapping,” using yeast glycolysis as the experimental model. Construction of a “single-locus glycolysis” Saccharomyces cerevisiae platform enabled quick and easy replacement of this yeast’s entire complement of 26 glycolytic isoenzymes by any alternative, functional glycolytic pathway configuration. The potential of this approach was demonstrated by the construction and characterization of S. cerevisiae strains whose growth depended on two nonnative glycolytic pathways: a complete glycolysis from the related yeast Saccharomyces kudriavzevii and a mosaic glycolysis consisting of yeast and human enzymes. This work demonstrates the feasibility and potential of modular, combinatorial approaches to engineering and analysis of core cellular processes.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 679 ◽  
Author(s):  
Jordi Tronchoni ◽  
Estéfani García-Ríos ◽  
Jose Manuel Guillamón ◽  
Amparo Querol ◽  
Roberto Pérez-Torrado

Background: Although Saccharomyces cerevisiae is the most frequently isolated species in wine fermentation, and the most studied species, other species and interspecific hybrids have greatly attracted the interest of researchers in this field in the last few years, given their potential to solve new winemaking industry challenges. S. cerevisiae x S. kudriavzevii hybrids exhibit good fermentative capabilities at low temperatures, and produce wines with smaller alcohol quantities and larger glycerol quantities, which can be very useful to solve challenges in the winemaking industry such as the necessity to enhance the aroma profile. Methods: In this study, we performed a transcriptomic study of S. cerevisiae x S. kudriavzevii hybrids in low temperature winemaking conditions. Results: The results revealed that the hybrids have acquired both fermentative abilities and cold adaptation abilities, attributed to S. cerevisiae and S. kudriavzevii parental species, respectively, showcasing their industrially relevant characteristics. For several key genes, we also studied the contribution to gene expression of each of the alleles of S. cerevisiae and S. kudriavzevii in the S. cerevisiae x S. kudriavzevii hybrids. From the results, it is not clear how important the differential expression of the specific parental alleles is to the phenotype of the hybrids. Conclusions: This study shows that the fermentative abilities of S. cerevisiae x S. kudriavzevii hybrids at low temperatures do not seem to result from differential expression of specific parental alleles of the key genes involved in this phentoype.


2014 ◽  
Vol 28 (S1) ◽  
Author(s):  
Kam Dahlquist ◽  
Nicolette Harmon ◽  
Chidinma Amakiri ◽  
Katrina Sherbina ◽  
Nicholas Rohacz ◽  
...  

2012 ◽  
Vol 78 (9) ◽  
pp. 3256-3265 ◽  
Author(s):  
C. Erny ◽  
P. Raoult ◽  
A. Alais ◽  
G. Butterlin ◽  
P. Delobel ◽  
...  

ABSTRACTThe hybrid nature of lager-brewing yeast strains has been known for 25 years; however, yeast hybrids have only recently been described in cider and wine fermentations. In this study, we characterized the hybrid genomes and the relatedness of the Eg8 industrial yeast strain and of 24Saccharomyces cerevisiae/Saccharomyces kudriavzeviihybrid yeast strains used for wine making in France (Alsace), Germany, Hungary, and the United States. An array-based comparative genome hybridization (aCGH) profile of the Eg8 genome revealed a typical chimeric profile. Measurement of hybrids DNA content per cell by flow cytometry revealed multiple ploidy levels (2n, 3n, or 4n), and restriction fragment length polymorphism analysis of 22 genes indicated variable amounts ofS. kudriavzeviigenetic content in three representative strains. We developed microsatellite markers forS. kudriavzeviiand used them to analyze the diversity of a population isolated from oaks in Ardèche (France). This analysis revealed new insights into the diversity of this species. We then analyzed the diversity of the wine hybrids for 12S. cerevisiaeand 7S. kudriavzeviimicrosatellite loci and found that these strains are the products of multiple hybridization events between severalS. cerevisiaewine yeast isolates and variousS. kudriavzeviistrains. The Eg8 lineage appeared remarkable, since it harbors strains found over a wide geographic area, and the interstrain divergence measured with a (δμ)2genetic distance indicates an ancient origin. These findings reflect the specific adaptations made byS. cerevisiae/S. kudriavzeviicryophilic hybrids to winery environments in cool climates.


Sign in / Sign up

Export Citation Format

Share Document