scholarly journals RNA interference-mediated gene silencing in murine T cells: in vitro and in vivo validation of proinflammatory target genes

2008 ◽  
Vol 6 (1) ◽  
pp. 3 ◽  
Author(s):  
Tatjana C Gust ◽  
Luisa Neubrandt ◽  
Claudia Merz ◽  
Khusru Asadullah ◽  
Ulrich Zügel ◽  
...  
2004 ◽  
Vol 24 (3) ◽  
pp. 1341-1350 ◽  
Author(s):  
Daniele Bergamaschi ◽  
Yardena Samuels ◽  
Boquan Jin ◽  
Sai Duraisingham ◽  
Tim Crook ◽  
...  

ABSTRACT We recently showed that ASPP1 and ASPP2 stimulate the apoptotic function of p53. We show here that ASPP1 and ASPP2 also induce apoptosis independently of p53. By binding to p63 and p73 in vitro and in vivo, ASPP1 and ASPP2 stimulate the transactivation function of p63 and p73 on the promoters of Bax, PIG3, and PUMA but not mdm2 or p21WAF-1/CIP1. The expression of ASPP1 and ASPP2 also enhances the apoptotic function of p63 and p73 by selectively inducing the expression of endogenous p53 target genes, such as PIG3 and PUMA, but not mdm2 or p21WAF-1/CIP1. Removal of endogenous p63 or p73 with RNA interference demonstrated that (16) the p53-independent apoptotic function of ASPP1 and ASPP2 is mediated mainly by p63 and p73. Hence, ASPP1 and ASPP2 are the first two identified common activators of all p53 family members. All these results suggest that ASPP1 and ASPP2 could suppress tumor growth even in tumors expressing mutant p53.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Takazumi Taniguchi ◽  
Ken-ichi Endo ◽  
Hidetoshi Tanioka ◽  
Masaaki Sasaoka ◽  
Kei Tashiro ◽  
...  

AbstractDespite efficient and specific in vitro knockdown, more reliable and convenient methods for in vivo knockdown of target genes remain to be developed particularly for retinal research. Using commercially available and chemically modified siRNA so-called Accell siRNA, we established a novel in vivo gene silencing approach in the rat retina. siRNA designed for knockdown of the house keeping gene Gapdh or four retinal cell type-specific genes (Nefl, Pvalb, Rho and Opn1sw) was injected into the vitreous body, and their retinal mRNA levels were quantified using real-time PCR. Intravitreal injection of siRNA for Gapdh resulted in approximately 40–70% reduction in its retinal mRNA levels, which lasted throughout a 9-day study period. Furthermore, all the selected retinal specific genes were efficiently down-regulated by 60–90% following intravitreal injection, suggesting injected siRNA penetrated into major retinal cell types. These findings were consistent with uniform distribution of a fluorescence-labeled siRNA injected into the vitreous body. Interestingly, gene silencing of Grin1, a core subunit of NMDA receptor, was accompanied by significant prevention from NMDA-induced retinal ganglion cell death. Thus, we provide single intravitreal injection of Accell siRNA as a versatile technique for robust and sustainable in vivo retinal gene silencing to characterize their biological functions under physiological and pathophysiological conditions.


2013 ◽  
Vol 455 (2) ◽  
pp. 133-147 ◽  
Author(s):  
Michael Freeley ◽  
Aideen Long

The specificity of RNAi and its ability to silence ‘undruggable’ targets has made inhibition of gene expression in T-cells with siRNAs an attractive potential therapeutic strategy for the treatment of inflammatory disease, cancer and infection. However, delivery of siRNAs into primary T-cells represents a major hurdle to their use as potential therapeutic agents. Recent advances in siRNA delivery through the use of electroporation/nucleofection, viral vectors, peptides/proteins, nanoparticles, aptamers and other agents have now enabled efficient gene silencing in primary T-cells both in vitro and in vivo. Overcoming such barriers in siRNA delivery offers exciting new prospects for directly targeting T-cells systemically with siRNAs, or adoptively transferring T-cells back into patients following ex vivo manipulation with siRNAs. In the present review, we outline the challenges in delivering siRNAs into primary T-cells and discuss the mechanism and therapeutic opportunities of each delivery method. We emphasize studies that have exploited RNAi-mediated gene silencing in T-cells for the treatment of inflammatory disease, cancer and infection using mouse models. We also discuss the potential therapeutic benefits of manipulating T-cells using siRNAs for the treatment of human diseases.


Blood ◽  
2008 ◽  
Vol 112 (5) ◽  
pp. 1813-1821 ◽  
Author(s):  
Jeremy B. Samon ◽  
Ameya Champhekar ◽  
Lisa M. Minter ◽  
Janice C. Telfer ◽  
Lucio Miele ◽  
...  

Abstract Notch and its ligands have been implicated in the regulation and differentiation of various CD4+ T-helper cells. Regulatory T cells (Tregs), which express the transcription factor Foxp3, suppress aberrant immune responses that are typically associated with autoimmunity or excessive inflammation. Previous studies have shown that transforming growth factor beta (TGFβ1) induces Foxp3 expression and a regulatory phenotype in peripheral T cells. Here, we show that pharmacologic inhibition of Notch signaling using γ-secretase inhibitor (GSI) treatment blocks (1) TGFβ1-induced Foxp3 expression, (2) the up-regulation of Foxp3-target genes, and (3) the ability to suppress naive T-cell proliferation. In addition, the binding of Notch1, CSL, and Smad to conserved binding sites in the foxp3 promoter can be inhibited by treatment with GSI. Finally, in vivo administration of GSI results in reduced Foxp3 expression and development of symptoms consistent with autoimmune hepatitis, a disease previously found to result from dysregulation of TGFβ signaling and regulatory T cells. Together, these findings indicate that the Notch and TGFβ signaling pathways cooperatively regulate Foxp3 expression and regulatory T-cell maintenance both in vitro and in vivo.


2015 ◽  
Vol 1 (2) ◽  
pp. 122-128
Author(s):  
Syuichi Koarada ◽  
Yuri Sadanaga ◽  
Natsumi Nagao ◽  
Satoko Tashiro ◽  
Rie Suematsu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document