scholarly journals ASPP1 and ASPP2: Common Activators of p53 Family Members

2004 ◽  
Vol 24 (3) ◽  
pp. 1341-1350 ◽  
Author(s):  
Daniele Bergamaschi ◽  
Yardena Samuels ◽  
Boquan Jin ◽  
Sai Duraisingham ◽  
Tim Crook ◽  
...  

ABSTRACT We recently showed that ASPP1 and ASPP2 stimulate the apoptotic function of p53. We show here that ASPP1 and ASPP2 also induce apoptosis independently of p53. By binding to p63 and p73 in vitro and in vivo, ASPP1 and ASPP2 stimulate the transactivation function of p63 and p73 on the promoters of Bax, PIG3, and PUMA but not mdm2 or p21WAF-1/CIP1. The expression of ASPP1 and ASPP2 also enhances the apoptotic function of p63 and p73 by selectively inducing the expression of endogenous p53 target genes, such as PIG3 and PUMA, but not mdm2 or p21WAF-1/CIP1. Removal of endogenous p63 or p73 with RNA interference demonstrated that (16) the p53-independent apoptotic function of ASPP1 and ASPP2 is mediated mainly by p63 and p73. Hence, ASPP1 and ASPP2 are the first two identified common activators of all p53 family members. All these results suggest that ASPP1 and ASPP2 could suppress tumor growth even in tumors expressing mutant p53.

2019 ◽  
Vol 10 (10) ◽  
Author(s):  
Yajie Chen ◽  
Qian Hao ◽  
Jieqiong Wang ◽  
Jiajia Li ◽  
Canhua Huang ◽  
...  

Abstract Hotspot p53 mutants augment cancer cell proliferation, metastasis and metabolism through their gain-of-function (GOF). Ovarian cancer sustains the highest frequency of TP53 mutations, but the mechanisms underlying regulation of mutant p53s’ GOF in this type of cancer remain incompletely understood. Herein, we identified the E3-ubiquitin ligase TRIM71 as a novel mutant p53-binding protein. Ectopic TRIM71-induced ubiquitination and proteasomal degradation of mutant p53 by binding to its transactivation (TA) domain, and inhibited the expression of a broad spectrum of mutant p53 target genes. Ectopic TRIM71 also restrained, whereas ablation of TRIM71 endorsed, ovarian carcinoma cell growth in vitro and in vivo. Significantly, TRIM71 overexpression is highly associated with favorable prognosis, particularly, in TP53-mutated ovarian carcinomas. Altogether, our findings unveil the anti-tumor function of TRIM71 in ovarian cancer development and prognosis by downregulating mutant p53s.


Blood ◽  
2010 ◽  
Vol 116 (24) ◽  
pp. 5256-5267 ◽  
Author(s):  
Lina Happo ◽  
Mark S. Cragg ◽  
Belinda Phipson ◽  
Jon M. Haga ◽  
Elisa S. Jansen ◽  
...  

Abstract DNA-damaging chemotherapy is the backbone of cancer treatment, although it is not clear how such treatments kill tumor cells. In nontransformed lymphoid cells, the combined loss of 2 proapoptotic p53 target genes, Puma and Noxa, induces as much resistance to DNA damage as loss of p53 itself. In Eμ-Myc lymphomas, however, lack of both Puma and Noxa resulted in no greater drug resistance than lack of Puma alone. A third B-cell lymphoma-2 homology domain (BH)3-only gene, Bim, although not a direct p53 target, was up-regulated in Eμ-Myc lymphomas incurring DNA damage, and knockdown of Bim levels markedly increased the drug resistance of Eμ-Myc/Puma−/−Noxa−/− lymphomas both in vitro and in vivo. Remarkably, c-MYC–driven lymphoma cell lines from Noxa−/−Puma−/−Bim−/− mice were as resistant as those lacking p53. Thus, the combinatorial action of Puma, Noxa, and Bim is critical for optimal apoptotic responses of lymphoma cells to 2 commonly used DNA-damaging chemotherapeutic agents, identifying Bim as an additional biomarker for treatment outcome in the clinic.


2008 ◽  
Vol 6 (1) ◽  
pp. 3 ◽  
Author(s):  
Tatjana C Gust ◽  
Luisa Neubrandt ◽  
Claudia Merz ◽  
Khusru Asadullah ◽  
Ulrich Zügel ◽  
...  

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11591
Author(s):  
Jianfeng Guo ◽  
Yapei Zhu ◽  
Lili Yu ◽  
Yuan Li ◽  
Jing Guo ◽  
...  

Background Ovarian cancer is the most common gynecological malignancy and is difficult to manage due to the emergence of resistance to various chemotherapeutic drugs. New efforts are urgently awaited. Aspirin, which is traditionally considered a nonsteroidal anti-inflammatory drug (NSAID), has been reported to exert potential chemopreventive effects. Therefore, we aimed to investigate the anticancer effect and explore the underlying molecular mechanisms of aspirin on epithelial ovarian cancer (EOC) cells. Methods We conducted wound healing, transwell migration, EdU cell proliferation, colony formation and apoptosis detection assays to observe the effects of aspirin on the migration, proliferation and apoptosis of EOC cells (A2870, Caov-3, and SK-OV-3). EOC cells were treated with a combination of aspirin and cisplatin (CDDP) to observe the effect of aspirin on enhancing CDDP sensitivity. Orthotopic xenograft models of ovarian cancer established with A2780-Luciferase-GFP cells were applied to compare tumor growth inhibition in the control, CDDP and CDDP plus aspirin groups through in vivo imaging, which can be used to continuously monitor tumor growth. The expression and acetylation levels of p53 in EOC cells treated with aspirin were determined using western blotting, and p53 acetylation levels were examined in tumors harvested from the transplanted mice. Quantitative real-time PCR was used to assess the mRNA expression of p53 target genes. Results Aspirin inhibited migration and proliferation and induced apoptosis in EOC cell lines in a concentration-dependent manner. In vitro, aspirin enhanced the sensitivity of EOC cells to CDDP by increasing its inhibitory effect on proliferation and its effect on inducing apoptosis. In vivo, the differences in the tumor growth inhibition rates among the different CDDP experimental groups were statistically significant (p < 0.05). Aspirin did not affect p53 protein expression but increased the p53 acetylation level in a concentration-dependent manner. In addition, the mRNA levels of CDKN1A, BAX, FOXF1, PUMA, and RRAD in EOC cells were significantly increased by the aspirin treatment. Conclusions Aspirin inhibits tumor progression and enhances the CDDP sensitivity of EOC cells. These antitumor effects of aspirin might be mediated by p53 acetylation and subsequent activation of p53 target genes.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2057-2057
Author(s):  
Jastinder Sohal ◽  
Ruji Begum ◽  
Neal Fischbach ◽  
Davinder Theti ◽  
Ruth Pettengell ◽  
...  

Abstract Most cases of acute myeloid leukemia (AML) are closely associated with gene rearrangements. Appraisal of these translocations and analysis of mouse models of leukemia has revealed that several members of the homeodomain containing family of transcription factors are implicated in the pathogenesis of leukemia. Overexpression of HOXA9 in murine models leads to the development of AML. This study focuses on the role of a subset of the HOX genes and their potential as a target for therapeutic intervention. We have designed a synthetic peptide, HXP4, that disrupts the interaction between HOX and PBX leading to growth inhibition of leukemic cells. An in vitro HOX-induced AML model of leukemia was utilised to determine the efficacy of HXP4 as a therapeutic agent. Using this immortalised cell line overexpressing HOXA9 (imHOXA9), we tested the efficacy of HXP4 in vitro. Cells were treated with HXP4 for four days and analysed. All results are expressed relative to untreated control cells. Following a 60μM dose of HXP4, no viable cells were detected as determined by trypan blue staining, suggesting that HXP4 was cytotoxic. Following treatment with a lower dose of 6μM HXP4, and re-suspension in drug-free medium for a further 6 days, cell regrowth was observed, suggesting a cytostatic effect. RT-PCR was performed to identify potential downstream targets of HXP4. Qualitative analysis showed other HOX family members to be unaffected by treatment with either HXP4 dose. A more detailed study was performed using quantitative RT-PCR with imHOXA9. Cells were treated with either 60μM HXP4, 3μM etoposide, or a combination of the two agents (H+Et) and harvested after 1, 2, and 4 hours. In general, no significant change in gene expression was observed in other HOX family members. However, HOXA1 was upregulated 3-fold when treated with HXP4, and HOXA2 was downregulated 2-fold in HXP4 and H+Et treated cells. The reasons for this are as yet unclear. HXP4 also downregulated N-RAS 3.5-fold at two hours. However, complete loss of N-RAS expression following H+Et treatment suggests that HXP4 may be more effective in combination with etoposide. CDC25 expression was slightly downregulated in HXP4-treated cells. The normal function of CDC25 is to activate CDC2 kinase in the nucleus, however in the absence of CDC25, CDC2 remains inactive leading to a delay in mitosis, supporting the proposed cytostatic mode of HXP4 action. For reasons as yet unclear, CD34 expression was upregulated 4-fold and 6-fold in HXP4 and H+Et treated cells respectively. These preliminary results suggest that HXP4 is a cytostatic agent at relatively low concentrations, with a reversible antiproliferative effect. Downstream genes regulated by disrupting the HOX-PBX interaction with HXP4 have been identified by RT-PCR, but microarray analysis will provide a more comprehensive screen for target genes. In vivo experiments are currently in progress. In conclusion blocking the interaction between HOX and PBX may represent a therapeutic strategy in leukemia treatment.


2018 ◽  
Vol 50 (1) ◽  
pp. 261-276 ◽  
Author(s):  
Xiaobing Liu ◽  
Xing Luo ◽  
Yuqi Wu ◽  
Ding Xia ◽  
Wei Chen ◽  
...  

Background/Aims: Treatment options for metastatic castrate-resistant prostate cancer (mCRPC) are limited and typically centered on paclitaxel-based chemotherapy. In this study, we aimed to evaluate whether miR-34a attenuates chemoresistance to paclitaxel by regulating target genes associated with drug resistance. Methods: We used data from The Cancer Genome Atlas to compare miR-34a expression levels in prostate cancer (PC) tissues with normal prostate tissues. The effects of miR-34a inhibition and overexpression on PC proliferation were evaluated in vitro via Cell Counting Kit-8 (CCK-8) proliferation, colony formation, apoptosis, and cell-cycle assays. A luciferase reporter assay was employed to identify the interactions between miR-34a and specific target genes. To determine the effects of up-regulation of miR-34a on tumor growth and chemo-resistance in vivo, we injected PC cells overexpressing miR-34a into nude mice subcutaneously and evaluated the rate of tumor growth during paclitaxel treatment. We examined changes in the expression levels of miR-34a target genes JAG1 and Notch1 and their downstream genes via miR-34a transfection by quantitative reverse transcription PCR (qRT-PCR) and western blot assay. Results: miR-34a served as an independent predictor of reduced patient survival. MiR-34a was down-regulated in PC-3PR cells compared with PC-3 cells. The CCK-8 assay showed that miR-34a overexpression resulted in increased sensitivity to paclitaxel while miR-34a down-regulation resulted in chemoresistance to paclitaxel in vitro. A study of gain and loss in a series of functional assays revealed that PC cells expressing miR-34a were chemosensitive. Furthermore, the overexpression of miR-34a increased the sensitivity of PC-3PR cells to chemotherapy in vivo. The luciferase reporter assay confirmed that JAG1 and Notch1 were directly targeted by miR-34a. Interestingly, western blot analysis and qRT-PCR confirmed that miR-34a inhibited the Notch1 signaling pathway. We found that miR-34a increased the chemosensitivity of PC-3PR cells by directly repressing the TCF1/ LEF1 axis. Conclusion: Our results showed that miR-34a is involved in the development of chemosensitivity to paclitaxel. By regulating the JAG1/Notch1 axis, miR-34a or its target genes JAG1 or Notch1 might serve as potential predictive biomarkers of response to paclitaxel-based chemotherapy and/or therapeutic targets that will help to overcome chemoresistance at the mCRPC stage.


2021 ◽  
Author(s):  
Elena Vasileva ◽  
Mikako Warren ◽  
Timothy J Triche ◽  
James F Amatruda

The Ewing sarcoma family of tumors is a group of malignant small round blue cell tumors (SRBCTs) that affects children, adolescents and young adults. The tumors are characterized by reciprocal chromosomal translocations that generate chimeric fusion oncogenes, the most common of which is EWSR1-FLI1. Survival is extremely poor for patients with metastatic or relapsed disease, and no molecularly-targeted therapy for this disease currently exists. The absence of a reliable genetic animal model of Ewing sarcoma has impaired investigation of tumor cell/microenvironmental interactions in vivo. We have developed a new genetic model of Ewing sarcoma based on Cre-inducible expression of human EWSR1-FLI1 in wild type zebrafish, which causes rapid onset of SRBCTs at high penetrance. The tumors express canonical EWSR1-FLI1 target genes and stain for known Ewing sarcoma markers including CD99. Growth of tumors is associated with activation of the MAPK/ERK pathway, which we link to dysregulated extracellular matrix metabolism in general and heparan sulfate catabolism in particular. Targeting heparan sulfate proteoglycans with the specific heparan sulfate antagonist Surfen reduces ERK1/2 signaling and decreases tumorigenicity of Ewing sarcoma cells in vitro and in vivo. These results highlight the important role of the extracellular matrix in Ewing sarcoma tumor growth and the potential of agents targeting proteoglycan metabolism as novel therapies for this disease.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Xiaoting Yu ◽  
Jing Jin ◽  
Yanwen Zheng ◽  
Hua Zhu ◽  
Hui Xu ◽  
...  

AbstractGuanylate binding proteins (GBPs), a family of interferon-inducible large GTPase, play a pivotal role in cell-autonomous immunity and tumor malignant transformation. Glioblastoma (GBM) is the most prevalent and lethal primary brain tumor in adults. Here we show that GBP5 was highly expressed in GBM cell lines and in clinical samples, especially in the mesenchymal subtype. The expression levels of GBP5 were negatively correlated with the prognosis of GBM patients. Overexpression of GBP5 promoted the proliferation, migration, and invasion of GBM cells in vitro and in vivo. In contrast, silencing GBP5 by RNA interference exhibited the opposite effects. Consequently, targeting GBP5 in GBM cells resulted in impaired tumor growth and prolonged survival time of mice with GBM tumors. We further identified that the Src/ERK1/2/MMP3 axis was essential for GBP5-promoted GBM aggressiveness. These findings suggest that GBP5 may represent a novel target for GBM intervention.


2010 ◽  
Vol 207 (1) ◽  
pp. 85-100 ◽  
Author(s):  
Sara I. Cunha ◽  
Evangelia Pardali ◽  
Midory Thorikay ◽  
Charlotte Anderberg ◽  
Lukas Hawinkels ◽  
...  

Members of the transforming growth factor β (TGF-β) family have been genetically linked to vascular formation during embryogenesis. However, contradictory studies about the role of TGF-β and other family members with reported vascular functions, such as bone morphogenetic protein (BMP) 9, in physiological and pathological angiogenesis make the need for mechanistic studies apparent. We demonstrate, by genetic and pharmacological means, that the TGF-β and BMP9 receptor activin receptor-like kinase (ALK) 1 represents a new therapeutic target for tumor angiogenesis. Diminution of ALK1 gene dosage or systemic treatment with the ALK1-Fc fusion protein RAP-041 retarded tumor growth and progression by inhibition of angiogenesis in a transgenic mouse model of multistep tumorigenesis. Furthermore, RAP-041 significantly impaired the in vitro and in vivo angiogenic response toward vascular endothelial growth factor A and basic fibroblast growth factor. In seeking the mechanism for the observed effects, we uncovered an unexpected signaling synergy between TGF-β and BMP9, through which the combined action of the two factors augmented the endothelial cell response to angiogenic stimuli. We delineate a decisive role for signaling by TGF-β family members in tumor angiogenesis and offer mechanistic insight for the forthcoming clinical development of drugs blocking ALK1 in oncology.


Sign in / Sign up

Export Citation Format

Share Document