scholarly journals Quantitative RT-PCR analysis of differentially expressed genes in Quercus suber in response to Phytophthora cinnamomi infection

SpringerPlus ◽  
2014 ◽  
Vol 3 (1) ◽  
Author(s):  
Ghazal Ebadzad ◽  
Alfredo Cravador
2006 ◽  
Vol 21 (2) ◽  
pp. 96-105 ◽  
Author(s):  
C.M. Coutinho-Camillo ◽  
E.C. Miracca ◽  
M.L. Dos Santos ◽  
S. Salaorni ◽  
A.S. Sarkis ◽  
...  

The CAG repeat within exon 1 of the androgen receptor (AR) has been associated with the development of prostate cancer. The shorter number of glutamine residues in the protein has been associated with a higher transcriptional activity of the AR and increased relative risk for prostate cancer. In an attempt to identify differentially expressed genes in prostate cancer in relation to AR CAG repeat length variation, in this study we used total mRNA from normal and tumor tissues from 2 prostate cancer patients with AR alleles containing 19 and 26 CAG repeats to perform differential-display RT-PCR analysis. We were able to identify 48 different transcripts that showed homology to several known genes associated with different biological pathways. Among the differentially expressed genes, ATRX and SFRP1 were further validated by quantitative RT-PCR. The transcripts of both ATRX and SFRP1 genes proved to be down-regulated in most of the prostate tumors analyzed by quantitative RT-PCR. Hypermethylation of the promoter region of the SFRP1 gene was found in 17.5% (7/40) of the cases analyzed and was associated with the loss of SFRP1 expression (p=0.014). The differentially expressed genes identified in this study are implicated in several cellular pathways that, when up- or down-regulated, might play a role in the tumorigenic process of the prostate.


Zootaxa ◽  
2019 ◽  
Vol 4591 (1) ◽  
pp. 1
Author(s):  
DAN LIANG ◽  
PEI WANG ◽  
LINGLING WU ◽  
XIAOLI JIANG ◽  
GUOQING WEI ◽  
...  

Actias selene (Hübner) is an important silk-spinning moth. Like other moths, it has innate immunity but no acquired immunity. However, there are few studies on immune-related genes of A. selene. Here, differential expression RNAseq experiment was employed to examine the genes related to different metabolic pathways and to explore the immune mechanism of the A. selene post Beauveria bassiana (Bb) and Micrococcus luteus (ML) stimuli. A total of 64,372,921 clean reads were obtained and 39,057 differentially expressed genes (DEGs) were identified. In the Bb vs. PBS group (PBS as the control), 9,092 genes were up-regulated and 4,438 genes were down-regulated; in the ML vs. PBS group, 5,903 genes were up-regulated and 5,175 genes were down-regulated. The KEGG (Kyoto Encyclopedia of Genes and Genomes) and GO (Gene Ontology) analyses of DEGs confirmed that many DEGs were associated with "Metabolism pathway", "cellular process", "cell" and "catalytic activity". Among them, 194 and 149 differentially expressed genes were related to immunity in the Bb vs. PBS group and ML vs. PBS group, respectively. We verified the reliability of the data with reverse transcription quantitative real-time PCR analysis of randomly selected genes. Furthermore, the phylogenetic tree results showed that HSP90, PGRP and MyD88 genes of A. selene were most closely related to Antheraea pernyi (Guérin-Méneville). These results will provide an overview of the molecular mechanism of A. selene resistance to fungal and bacterial infections as well as an evolutionary aspect of these genes. Moreover, the interrelated trophic mechanisms among different groups of organisms are vital to explore, thus this study will lay a foundation for further studies on the innate immune mechanism of saturniid moths, and provide important theoretical basis for studying the relationship between A. selene and other species.


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1904 ◽  
Author(s):  
Archana Khadgi ◽  
Courtney A. Weber

Red raspberry (Rubus idaeus L.) is a globally commercialized specialty crop with growing demand worldwide. The presence of prickles on the stems, petioles and undersides of the leaves complicates both the field management and harvesting of raspberries. An RNA sequencing analysis was used to identify differentially expressed genes in the epidermal tissue of prickled “Caroline” and prickle-free “Joan J.” and their segregating progeny. Expression patterns of differentially expressed genes (DEGs) in prickle-free plants revealed the downregulation of some vital development-related transcription factors (TFs), including a MIXTA-like R2R3-MYB family member; MADS-box; APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) and NAM, ATAF1/2 and CUC2 (NAC) in prickle-free epidermis tissue. The downregulation of these TFs was confirmed by qRT-PCR analysis, indicating a key regulatory role in prickle development. This study adds to the understanding of prickle development mechanisms in red raspberries needed for utilizing genetic engineering strategies for developing prickle-free raspberry cultivars and, possibly, other Rubus species, such as blackberry (Rubus sp.) and black raspberry (R. occidentalis L.).


2013 ◽  
Vol 40 (12) ◽  
pp. 1249 ◽  
Author(s):  
Hai-fen Li ◽  
Xiao-Ping Chen ◽  
Fang-he Zhu ◽  
Hai-Yan Liu ◽  
Yan-Bin Hong ◽  
...  

Peanut (Arachis hypogaea L.) produces flowers aerially, but the fruit develops underground. This process is mediated by the gynophore, which always grows vertically downwards. The genetic basis underlying gravitropic bending of gynophores is not well understood. To identify genes related to gynophore gravitropism, gene expression profiles of gynophores cultured in vitro with tip pointing upward (gravitropic stimulation sample) and downward (control) at both 6 and 12 h were compared through a high-density peanut microarray. After gravitropic stimulation, there were 174 differentially expressed genes, including 91 upregulated and 83 downregulated genes at 6 h, and 491 differentially expressed genes including 129 upregulated and 362 downregulated genes at 12 h. The differentially expressed genes identified were assigned to 24 functional categories. Twenty pathways including carbon fixation, aminoacyl-tRNA biosynthesis, pentose phosphate pathway, starch and sucrose metabolism were identified. The quantitative real-time PCR analysis was performed for validation of microarray results. Our study paves the way to better understand the molecular mechanisms underlying the peanut gynophore gravitropism.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4582-4582
Author(s):  
Wei Liao ◽  
Gwen Jordaan ◽  
Artur Jaroszewicz ◽  
Matteo Pellegrini ◽  
Sanjai Sharma

Abstract Abstract 4582 High throughput sequencing of cellular mRNA provides a comprehensive analysis of the transcriptome. Besides identifying differentially expressed genes in different cell types, it also provides information of mRNA isoforms and splicing alterations. We have analyzed two CLL specimens and a normal peripheral blood B cells mRNA by this approach and performed data analysis to identify differentially expressed and spliced genes. The result showed CLLs specimens express approximately 40% more transcripts compared to normal B cells. The FPKM data (fragment per kilobase of exon per million) revealed a higher transcript expression on chromosome 12 in CLL#1 indicating the presence of trisomy 12, which was confirmed by fluorescent in-situ hybridization assay. With a two-fold change in FPKM as a cutoff and a p value cutoff of 0.05 as compared to the normal B cell control, 415 genes and 174 genes in CLL#1 and 676 and 235 genes in CLL#2 were up and downregulated or differentially expressed. In these two CLL specimens, 45% to 75% of differentially expressed genes are common to both the CLL specimens indicating that genetically disparate CLL specimens have a high percentage of a core set of genes that are potentially important for CLL biology. Selected differentially expressed genes with increased expression (selectin P ligand, SELPLG, and adhesion molecule interacts with CXADR antigen 1, AMICA) and decreased (Fos, Jun, CD69 and Rhob) expression based on the FPKM from RNA-sequencing data were also analyzed in additional CLL specimens by real time PCR analysis. The expression data from RNA-seq closely matches the fold-change in expression as measured by RT-PCR analysis and confirms the validity of the RNA-seq analysis. Interestingly, Fos was identified as one of the most downregulated gene in CLL. Using the Cufflinks and Cuffdiff software, the splicing patterns of genes in CLL specimens and normal B cells were analyzed. Approximately, 1100 to 1250 genes in the two CLL specimens were significantly differentially spliced as compared to normal B cells. In this analysis as well, there is a core set of 800 common genes which are differentially spliced in the two CLL specimens. The RNA-sequencing analysis accurately identifies differentially expressed novel genes and splicing variations that will help us understand the biology of CLL. Disclosures: No relevant conflicts of interest to declare.


Pancreatology ◽  
2009 ◽  
Vol 9 (5) ◽  
pp. 577-582 ◽  
Author(s):  
Sylvia Streit ◽  
Christoph W. Michalski ◽  
Mert Erkan ◽  
Helmut Friess ◽  
Jörg Kleeff

2021 ◽  
Author(s):  
Jingqun Tang ◽  
Ziming Ye ◽  
Yi Liu ◽  
Mengxiao Zhou ◽  
chao qin

Abstract PurposeDefective stem cells have been recognized as being associated with autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, autoimmune cytopenias and myasthenia gravis (MG). However, the differential gene expression profile of bone marrow mononuclear cells (BMMCs) and the molecular mechanisms underlying MG pathogenesis have not been fully elucidated. Therefore, we investigated the abnormal expression and potential roles and mechanisms of mRNAs in BMMCs among patients with MG with or without thymoma.MethodsTranscription profiling of BMMCs in patients with MG without thymoma (M2) and patients with thymoma-associated MG (M1) was undertaken by using high-throughput RNA sequencing (RNA-Seq), and disease-related differentially expressed genes were validated by quantitative real-time polymerase chain reaction (qRT-PCR).ResultsRNA-Seq demonstrated 60 significantly upregulated and 65 significantly downregulated genes in M2 compared with M1. Five disease-related differentially expressed genes were identified and validated by qRT-PCR analysis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed to predict the functions of aberrantly expressed genes. Recombination activating 1 (RAG1), RAG2, BCL2-like 11, phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform and repressor element-1-silencing transcription factor might play roles in MG pathogenesis involving the primary immunodeficiency signaling pathway, signaling pathways regulating pluripotency of stem cells and forkhead box O signaling pathway.ConclusionThe aberrantly expressed genes of BMMCs in M1 or M2 patients demonstrate the underlying mechanisms governing the pathogenesis of MG.


2010 ◽  
Vol 22 (1) ◽  
pp. 274 ◽  
Author(s):  
M. Clemente ◽  
I. Lopez-Vidriero ◽  
P. O'Gaora ◽  
J. de la Fuente ◽  
A. Gutierrez-Adan ◽  
...  

The majority of embryonic mortality in cattle occurs before maternal recognition of pregnancy at Day 16 postconception. In vitro-derived embryos exhibit a greater incidence of loss than their in vivo-derived counterparts. To better understand the causes of such embryonic loss, the aim of the current study was to compare transcript profiles of Days 7 and 13 bovine embryos derived in vitro or in vivo using the bovine Affymetrix microarray. We wanted to answer 3 questions: (1) what genes differ on Day 7 between blastocysts derived in vivo or in vitro, (2) what genes differ between Day 13 embryos derived from in vitro or in vivo embryos, and (3) what genes change between the blastocyst stage (Day 7) and the initiation of elongation (Day 13) and how are these temporal changes affected by the origin of the embryo. Day 7 bovine blastocysts were produced either in vitro by maturation, fertilization, and culture or in vivo by superovulation, AI, and nonsurgical embryo recovery. Half of the Day 7 blastocysts were snap frozen in liquid nitrogen in pools of 25 (microarray) or 10 (quantitative RT-PCR), and the other half were transferred in groups of 10 to synchronized heifers (10 recipients per group) ipsilateral to the corpus luteum and recovered on Day 13 by flushing the uterus after slaughter. Day 13 conceptuses were snap frozen individually. Three replicate pools of 25 Day 7 blastocysts and 5 Day 13 conceptuses were used for microarray analysis. Of the 24 128 probe-sets on the array, approximately 9500 genes were actively expressed in Days 7 and 13 embryos, irrespective of source. In Day 7 blastocysts, 50 genes were found to be differentially expressed (≥ 1.5-fold; P ≤ 0.05), of which 19 were up-regulated and 31 down-regulated in the in vivo compared with in vitro embryos. In Day 13 conceptuses, 288 genes were found to be differentially expressed (≥1.5-fold; P ≤ 0.05), of which 133 were up-regulated and 155 down-regulated in the in vivo compared with in vitro embryos. The comparison between Days 7 and 13 embryos revealed significant temporal changes in transcript profile, with 1806 and 909 transcripts differentially expressed in in vitro and in vivo-derived embryos, respectively. Across the 3 array comparisons between Days 7 and 13 embryos, 444 genes were consistently exclusively present in in vivo embryos, whereas 1341 were exclusively present in in vitro embryos. Array validation was done by quantitative RT-PCR analysis of fatty acid desaturase 1 (FADS1), cytochrome P450, family 51, subfamily A, polypeptide I (CYP51), and hyaluronan binding protein 2 (HABP2) genes. In conclusion, these results indicate that the origin of the blastocyst can have a significant effect on the transcript profile of the conceptus at the initiation of elongation and might be associated with the likelihood of embryo survival/loss subsequently. Further hierarchical clustering analysis and quantitative RT-PCR data will address the functional roles for certain known genes and novel candidate genes related to embryonic mortality. This work was supported by a grant (AGL2006-05616) from the Spanish Ministry of Science and Technology.


Sign in / Sign up

Export Citation Format

Share Document