scholarly journals Hsp90 up-regulates PD-L1 to promote HPV-positive cervical cancer via HER2/PI3K/AKT pathway

2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Jie Zeng ◽  
Si-Li He ◽  
Li-Jie Li ◽  
Chen Wang

Abstract Background HPV16 is the predominant cancer-causing strain that is responsible for over 50% of all cervical cancers. In this study, we aim to investigate the therapeutic effect of heat shock protein 90 (Hsp90) knockdown on HPV16+ cervical cancer progression and the underlying mechanism. Methods The transcript and protein expression of Hsp90 in normal cervical and HPV16+ cervical cancer tissues and cell lines were detected by qRT-PCR, immunohistochemistry staining and Western blot. Hsp90 knockdown clones were established using HPV16+ cervical cancer cell line Caski and SiHa cells. The effect of Hsp90 knockdown on HER2/PI3K/AKT pathway and PD-L1 expression was characterized using qRT-PCR and Western blot analysis. Cell proliferation and migration were determined using MTT and transwell assays. Using mouse xenograft tumor model, the impact of Hsp90 knockdown and PD-L1 overexpression on tumor progression was evaluated. Results Hsp90 expression was up-regulated in HPV16+ cervical cancer tissues and cells. Knockdown of Hsp90 inhibited proliferation and migration of Caski and SiHa cells. PD-L1 expression in cervical cancer tissues was positively correlated with Hsp90 expression, and Hsp90 regulated PD-L1 expression via HER2/PI3K/AKT signaling pathway. The results of mouse xenograft tumor model demonstrated Hsp90 knockdown suppressed tumor formation and overexpression of PD-L1 simultaneously eliminated the cancer-suppressive effect of Hsp90 knockdown. Conclusion In this study, we demonstrated a promising tumor-suppressive effect of Hsp90 knockdown in HPV16+ cervical cancers, and investigated the underlying molecular pathway. Our results suggested that Hsp90 knockdown holds great therapeutic potential in treating HPV16+ cervical cancers.

RSC Advances ◽  
2019 ◽  
Vol 9 (39) ◽  
pp. 22376-22383 ◽  
Author(s):  
Fan Shi ◽  
Yingbing Zhang ◽  
Juan Wang ◽  
Jin Su ◽  
Zi Liu ◽  
...  

In this study, RNA-sequencing was used to investigate the differentially expressed miRNAs between cervical cancer tissues and matched adjacent non-tumor tissues.


2020 ◽  
Vol 16 (11) ◽  
pp. 1600-1611
Author(s):  
L.Y. Shao ◽  
R.R. Wang ◽  
Y.S. Sun ◽  
Z. Yue ◽  
H. Sun ◽  
...  

Human cervical cancer is the most common gynecological malignancy. The continuous development of nanotechnology has allowed the wide use of nanomaterials in cancer treatment. Nanoparticles can be used as gene carriers because of their surface effect and small-size effect. MicroRNA-let-7c-5p (miR-let-7c-5p) belongs to the let-7 family. Although it has been reported to exert a tumor suppressive effect in a variety of cancers, the exact role and mechanism of miR-let-7c-5p in the progression of cervical cancer are unclear. In this study, we synthesized flower-shaped SiO2 –PEI nanoparticles with high pDNA/siRNA loading rates. This nanoparticle with miR-let-7c-5p-expressed plasmid could effectively transfer miR-let-7c-5p to human epithelial carcinoma (HeLa) cells. In addition, the combination of nanomaterials and gene therapy could inhibit the development of cancer under the conditions of extremely low cytotoxicity. These findings provided a new anticancer strategy based on F-SiO2 -polyethyleneimine/miR-let-7c-5p (FSP-let-7c-5p)nanoparticles and indicated that miR-let-7c-5p/IGF-1R/PI3K/AKT and -catenin/SLUG could be used as new potential targets for the treatment of cervical cancer.


2014 ◽  
Vol 37 (3) ◽  
pp. 131 ◽  
Author(s):  
Yi Sun ◽  
Bo Zhang ◽  
Jiajing Cheng ◽  
Yi Wu ◽  
Fing Xing ◽  
...  

Purpose: This study aimed to investigate the role of small non-coding RNA-222 (microRNA-222; miR-222) in the development of cervical cancer (CC). Methods: Normal and CC specimens were obtained from 18 patients. HeLa and SiHa cells were grown in Dulbecco’s modified Eagle’s medium. RT–PCR, Western blot, migration assay, flow cytometry and immunofluorescence microscopy were used for analyses. Results: When compared with normal cervical tissues, miR-222 was upregulated in human CC, and the extent of up-regulation was associated with the extent and depth of CC invasion. Expression of miR-222 was inversely related to the expression of phosphatase and tensin homolog (PTEN) and p27. The reduced the expression of PTEN and p27 by miR-222 in HeLa cells and SiHa cells was associated with increased proliferation and migration of CC cells. The expression of proteins (E-cadherin and paxillin) related to the proliferation and migration was also elevated. Conclusion: MiR-222 plays an important role in the tumorigenesis of CC, possibly by specifically down-regulating p27Kip1 and PTEN. Our findings suggest that miR-222 may serve as a new therapeutic target in CC.


2019 ◽  
Vol 18 ◽  
pp. 153303381987130 ◽  
Author(s):  
Chunyan Liu ◽  
Xiuli Wang ◽  
Youzhong Zhang

Cancer cells undergo metabolic changes that support their malignant growth. These changes are often associated with increased expression of the rate-limiting glycolytic enzyme hexokinase 2. Hexokinase 2 is an enzyme that catalyzes the conversion of glucose to glucose-6-phosphate. In this study, we utilized Gene Expression Profiling Interactive Analysis (GEPIA) database analysis and clinical sample analysis to find that hexokinase 2 was highly expressed in cervical cancer. Furthermore, we found that high hexokinase 2 expression in cervical cancer demonstrated a positive correlation with tumor size ( P = .009696), pathological grade ( P = .028551), and prognosis ( P = .00069) but not with age ( P = .956201) or lymph node metastasis ( P = .131379). At the cellular level, we knocked down the expression of hexokinase 2 in the human cervical cancer cell line SiHa. The results demonstrated that knockdown of hexokinase 2 inhibited the proliferation and migration of SiHa cells and promoted cell apoptosis. During this process, knockdown of hexokinase 2 inhibited phosphorylation of AKT and mammalian target of rapamycin and promoted p53 expression. At the same time, overexpression of human papillomavirus 18 oncogenes E6 and E7 significantly promoted the expression of hexokinase 2. Most importantly, we discovered a novel upstream regulatory microRNA for hexokinase 2: miR-9-5p. Luciferase reporter assays and Western blot assays demonstrated that hexokinase 2 expression was inhibited by miR-9-5p by directly binding its 3′-untranslated region in SiHa cells. Next, we determined that miR-9-5p could suppress the proliferation and migration of SiHa cells and induce apoptosis. In conclusion, we found that hexokinase 2 serves a carcinogenic role in cervical cancer through the miR-9-5p/hexokinase 2/AKT pathway, which serves as the basis for potential therapeutic targets and prognostic indicators.


2020 ◽  
Vol 19 ◽  
pp. 153303382093413 ◽  
Author(s):  
Huiling Zhang ◽  
Ruxin Chen ◽  
Jinyan Shao

Purpose: The current study was intended to research the functional role and regulatory mechanism of microRNA-96-5p in the progression of cervical cancer. Methods: MicroRNA-96-5p expression in cervical cancer tissues was assessed by quantitative real-time polymerase chain reaction. The association between microRNA-96-5p expression and clinicopathological features of patients with cervical cancer was analyzed. MTT, flow cytometry, wound healing, and transwell assay were performed to evaluate the viability, apoptosis, migration, and invasion of Hela and SiHa cells. Targetscan, dual-luciferase reporter gene assay, and RNA pull-down analysis were constructed to evaluate the target relationship between microRNA-96-5p and secreted frizzled-related protein 4. Results: MicroRNA-96-5p was overexpressed in cervical cancer tissues, and microRNA-96-5p expression was markedly associated with the clinical stage and lymph node metastasis of patients with cervical cancer. Overexpressed microRNA-96-5p facilitated the viability, migration, invasion, and inhibited the apoptosis of Hela and SiHa cells, whereas suppression of microRNA-96-5p exerted the opposite trend. Secreted frizzled-related protein 4 was proved to be a target of microRNA-96-5p. Silencing of secreted frizzled-related protein 4 eliminated the anti-tumor effect of microRNA-96-5p on cervical cancer cells. Conclusions: MicroRNA-96-5p facilitated the viability, migration, and invasion and inhibited the apoptosis of cervical cancer cells via negatively regulating secreted frizzled-related protein 4.


2021 ◽  
Vol 20 ◽  
pp. 153303382110330
Author(s):  
Zhenzhao Luo ◽  
Yue Fan ◽  
Xianchang Liu ◽  
Shuiyi Liu ◽  
Xiaoyu Kong ◽  
...  

Background: Previous studies reported that N-myc downstream-regulated gene 1 (NDRG1) was upregulated in various cancer tissues and decreased expression of miR-188-3p and miR-133b could suppress cell proliferation, metastasis, and invasion and induce apoptosis of cancer cells. However, the molecular mechanism of NRDG1 involved in hepatocellular carcinoma (HCC) tumorigenesis is still unknown. Methods: The expressions of miR-188-3p, miR-133b, and NRDG1 in HCC tissues and cells were quantified by qRT-PCR and Western blot. MTT assay and transwell invasion assay were performed to evaluate cell growth and cell migration, respectively. Luciferase reporter assay were performed to determine whether miR-188-3p and miR-133b could directly bind to NRDG1 in HCC cells. Results: The results showed that NRDG1 was upregulated and these 2 microRNAs were downregulated in HCC tissues. NRDG1 was negatively correlated with miR-188-3p and miR-133b in HCC tissues. MiR-188-3p and miR-133b were demonstrated to directly bind to 3′UTR of NRDG1 and inhibit its expression. Upregulation of miR-188-3p and miR-133b reduced NRDG1 expression in hepatocellular carcinoma cell lines, which consequently inhibited cell growth and cell migration. Conclusions: Our finding suggested that miR-188-3p and miR-133b exert a suppressive effect on hepatocellular carcinoma proliferation, invasion, and migration through downregulation of NDRG1.


RSC Advances ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 5230-5230
Author(s):  
Laura Fisher

Retraction of ‘RNA-sequencing identified miR-3681 as a negative regulator in the proliferation and migration of cervical cancer cells via the posttranscriptional suppression of HGFR’ by Fan Shi et al., RSC Adv., 2019, 9, 22376–22383, DOI: 10.1039/C9RA01785B.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Weiyang Li ◽  
Yanwei Qi ◽  
Xiaofang Cui ◽  
Qing Huo ◽  
Liangxi Zhu ◽  
...  

High-risk HPV is clearly associated with cervical cancer. HPV integration has been confirmed to promote carcinogenesis in the previous studies. In our study, a total of 285 DNA breakpoints and 287 RNA breakpoints were collected. We analyzed the characteristic of HPV integration in the DNA and RNA samples. The results revealed that the patterns of HPV integration in RNA and DNA samples differ significantly. FHIT, KLF5, and LINC00392 were the hotspot genes integrated by HPV in the DNA samples. RAD51B, CASC8, CASC21, ERBB2, TP63, TEX41, RAP2B, and MYC were the hotspot genes integrated by HPV in RNA samples. Breakpoints of DNA samples were significantly prone to the region of INTRON (P < 0.01, Chi-squared test), whereas in the RNA samples, the breakpoints were prone to EXON. Pathway analysis had revealed that the breakpoints of RNA samples were enriched in the pathways of transcriptional misregulation in cancer, cancer pathway, and pathway of adherens junction. Breakpoints of DNA samples were enriched in the pathway of cholinergic synapse. In summary, our data helped to gain insights into the HPV integration sites in DNA and RNA samples of cervical cancer. It had provided theoretical basis for understanding the mechanism of tumorigenesis from the perspective of HPV integration in the HPV-associated cervical cancers.


2021 ◽  
Author(s):  
Jun Tian ◽  
Bei Li ◽  
Jing Qiao ◽  
Xinfeng Pang ◽  
Xiaojing Yue

Abstract Background: Programmed cell death protein 4 (PDCD4), which serves as a tumor suppressor protein, plays a important role in cell proliferation,apoptosis, cell migration and DNA-damage response.However, the exact mechanism for the deubiquitination of PDCD4 remain unclear.Methods: Western blotting was used to detect the expression of PDCD4 in the breast cancer tissues and BC cell lines. We identified the potential PDCD4 associated deubiquitinase by RNAi screening. GST-Pull down and domain-mapping analysis were used to reveal that USP13 and PDCD4 directly interact with each other.Flow cytometry was used to detect the changes of G1 to S phase. Soft agar assay was used to measure the changes of the cell proliferation efficiency.Results: The expression of PDCD4 was decreased in the breast cancer tissues and BC cell lines. USP13 as a potential PDCD4 associated deubiquitinase. USP13 physically interacted with PDCD4 and greatly increased the steady state of PDCD4 through the ubiquitin-proteasome pathway.Importantly, silencing of the USP13 facilitated cell cycle from G1 to Sphase, promoted breast tumor cells proliferation and migration through downregulation of PDCD4. Conclusions: Together, these results suggest that USP13 plays an important role in the breast tumor proliferation and migration through modulating PDCD4 stability.


Sign in / Sign up

Export Citation Format

Share Document