scholarly journals Impact of Bi Doping into Boron Nitride Nanosheets on Electronic and Optical Properties Using Theoretical Calculations and Experiments

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Muhammad Ikram ◽  
Muhammad Wakeel ◽  
Jahanzeb Hassan ◽  
Ali Haider ◽  
Sadia Naz ◽  
...  

AbstractIn the present work, boron nitride (BN) nanosheets were prepared through bulk BN liquid phase exfoliation while various wt. ratios (2.5, 5, 7.5 and 10) of bismuth (Bi) were incorporated as dopant using hydrothermal technique. Our findings exhibit that the optical investigation showed absorption spectra in near UV region. Density functional theory calculations indicate that Bi doping has led to various modifications in the electronic structures of BN nanosheet by inducing new localized gap states around the Fermi level. It was found that bandgap energy decrease with the increase of Bi dopant concentrations. Therefore, in analysis of the calculated absorption spectra, a redshift has been observed in the absorption edges, which is consistent with the experimental observation. Additionally, host and Bi-doped BN nanosheets were assessed for their catalytic and antibacterial potential. Catalytic activity of doped free and doped BN nanosheets was evaluated by assessing their performance in dye reduction/degradation process. Bactericidal activity of Bi-doped BN nanosheets resulted in enhanced efficiency measured at 0–33.8% and 43.4–60% against S. aureus and 0–38.8% and 50.5–85.8% against E. coli, respectively. Furthermore, In silico molecular docking predictions were in good agreement with in-vitro bactericidal activity. Bi-doped BN nanosheets showed good binding score against DHFR of E. coli (− 11.971 kcal/mol) and S. aureus (− 8.526 kcal/mol) while binding score for DNA gyrase from E. coli (− 6.782 kcal/mol) and S. aureus (− 7.819 kcal/mol) suggested these selected enzymes as possible target.

Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4191 ◽  
Author(s):  
Agnieszka Gonciarz ◽  
Robert Pich ◽  
Krzysztof Artur Bogdanowicz ◽  
Beata Jewloszewicz ◽  
Wojciech Przybył ◽  
...  

In this paper, four new aromatic imines containing at least one thiazole-based heterocycle were analyzed in detail by UV–Vis spectroscopy, taking into consideration their chemical structures and interactions with PTB7, a known polymeric electron donor widely used in bulk heterojunction organic solar cells. It is demonstrated that the absorption spectra of the investigated active compositions can be modified not only by changing the chemical structure of imine, but also via formulations with PTB7. For all investigated imines and PTB7:imine compositions, calibration curves were obtained in order to find the optimum concentration in the composition with PTB7 for expansion and optimization of absorption spectra. All imines and PTB7:imine compositions were investigated in 1,2-dichlorobenzene by UV–Vis spectroscopy in various concentrations, monitoring the changes in the π–π* and n–π* transitions. With increasing imine concentrations, we did not observe changes in absorption maxima, while with increasing imine concentrations, a hypochromic effect was observed. Finally, we could conclude that all investigated compositions exhibited wide absorptions of up to 800 nm and isosbestic points in the range of 440–540 nm, confirming changes in the macromolecular organization of the tested compounds. The theoretical calculations of their vibration spectra (FTIR) and LUMO–HOMO levels by Density Functional Theory (DFT) methods are also provided. Finally, IR thermal images were measured for organic devices based on imines and the imine:PTB7 composite.


2019 ◽  
Vol 2019 ◽  
pp. 1-5
Author(s):  
Melanie Walker ◽  
Kelvin Jones ◽  
DaiQuan Noble ◽  
Marquavias Walker ◽  
Douglas L. Strout

Boron nitride is a material similar to carbon in its ability to adopt numerous molecular forms, including two-dimensional sheets and three-dimensional cages and nanotubes. Boron nitride single molecules, such as B12N12, have isomeric forms that include rings and sheets, as well as cage forms analogous and isoelectronic to the carbon fullerenes. Such cages tend to be composed of squares and hexagons to allow perfect alternation of boron and nitrogen atoms, which is possible because of the 1 : 1 ratio of boron-to-nitrogen atoms. What about molecules in which this 1 : 1 ratio does not apply? In the current study, theoretical calculations are carried out on molecules of B10N14 to determine energetically favorable isomers. Density functional theory is used in conjunction with Dunning basis sets. Cage, sheet, and ring isomers are considered. Energetic trends are calculated and discussed, in comparison to comparable studies on B12N12.


1988 ◽  
Vol 102 ◽  
pp. 71-73
Author(s):  
E. Jannitti ◽  
P. Nicolosi ◽  
G. Tondello

AbstractThe photoabsorption spectra of the carbon ions have been obtained by using two laser-produced plasmas. The photoionization cross-section of the CV has been absolutely measured and the value at threshold, σ=(4.7±0.5) × 10−19cm2, as well as its behaviour at higher energies agrees quite well with the theoretical calculations.


2018 ◽  
Author(s):  
Mihails Arhangelskis ◽  
Athanassis Katsenis ◽  
Novendra Novendra ◽  
Zamirbek Akimbekov ◽  
Dayaker Gandrath ◽  
...  

By combining mechanochemical synthesis and calorimetry with theoretical calculations, we demonstrate that dispersion-corrected periodic density functional theory (DFT) can accurately survey the topological landscape and predict relative energies of polymorphs for a previously inaccessible fluorine-substituted zeolitic imidazolate framework (ZIF). Experimental screening confirmed two out of three theoretically anticipated polymorphs, and the calorimetric measurements provided an excellent match to theoretically calculated energetic difference between them.<br>


2019 ◽  
Vol 22 (7) ◽  
pp. 470-482
Author(s):  
Samereh Ghazanfary ◽  
Fatemeh Oroojalian ◽  
Rezvan Yazdian-Robati ◽  
Mehdi Dadmehr ◽  
Amirhossein Sahebkar

Background: Boron Nitride Nanotubes (BNNTs) have recently emerged as an interesting field of study, because they could be used for the realization of developed, integrated and compact nanostructures to be formulated. BNNTs with similar surface morphology, alternating B and N atoms completely substitute for C atoms in a graphitic-like sheet with nearly no alterations in atomic spacing, with uniformity in dispersion in the solution, and readily applicable in biomedical applications with no obvious toxicity. Also demonstrating a good cell interaction and cell targeting. Aim and Objective: With a purpose of increasing the field of BNNT for drug delivery, a theoretical investigation of the interaction of Melatonin, Vitamin C, Glutathione and lipoic acid antioxidants using (9, 0) zigzag BNNTs is shown using density functional theory. Methods: The geometries corresponding to Melatonin, Vitamin C, Glutathione and lipoic acid and BNNT with different lengths were individually optimized with the DMOL3 program at the LDA/ DNP (fine) level of theory. Results: In the presence of external electric field Melatonin, Vitamin C, Glutathione and lipoic acid could be absorbed considerably on BNNT with lengths 22 and 29 Å, as the adsorption energy values in the presence of external electric field are considerably increased. Conclusion: The external electric field is an appropriate technique for adsorbing and storing antioxidants on BNNTs. Moreover, it is believed that applying the external electric field may be a proper method for controlling release rate of drugs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Christian Wiebeler ◽  
Joachim Vollbrecht ◽  
Adam Neuba ◽  
Heinz-Siegfried Kitzerow ◽  
Stefan Schumacher

AbstractA detailed investigation of the energy levels of perylene-3,4,9,10-tetracarboxylic tetraethylester as a representative compound for the whole family of perylene esters was performed. It was revealed via electrochemical measurements that one oxidation and two reductions take place. The bandgaps determined via the electrochemical approach are in good agreement with the optical bandgap obtained from the absorption spectra via a Tauc plot. In addition, absorption spectra in dependence of the electrochemical potential were the basis for extensive quantum-chemical calculations of the neutral, monoanionic, and dianionic molecules. For this purpose, calculations based on density functional theory were compared with post-Hartree–Fock methods and the CAM-B3LYP functional proved to be the most reliable choice for the calculation of absorption spectra. Furthermore, spectral features found experimentally could be reproduced with vibronic calculations and allowed to understand their origins. In particular, the two lowest energy absorption bands of the anion are not caused by absorption of two distinct electronic states, which might have been expected from vertical excitation calculations, but both states exhibit a strong vibronic progression resulting in contributions to both bands.


Author(s):  
Adrian Dominguez-Castro ◽  
Thomas Frauenheim

Theoretical calculations are an effective strategy to comple- ment and understand experimental results in atomistic detail. Ehrenfest molecular dynamics simulations based on the real-time time-dependent density functional tight-binding (RT-TDDFTB) approach...


2020 ◽  
Vol 18 (1) ◽  
pp. 936-942
Author(s):  
Ardhmeri Alija ◽  
Drinisa Gashi ◽  
Rilinda Plakaj ◽  
Admir Omaj ◽  
Veprim Thaçi ◽  
...  

AbstractThis study is focused on the adsorption of hexavalent chromium ions Cr(vi) using graphene oxide (GO). The GO was prepared by chemical oxidation (Hummers method) of graphite particles. The synthesized GO adsorbent was characterized by Fourier transform infrared spectroscopy and UV-Vis spectroscopy. It was used for the adsorption of Cr(vi) ions. The theoretical calculations based on density functional theory and Monte Carlo calculations were used to explore the preferable adsorption site, interaction type, and adsorption energy of GO toward the Cr(vi) ions. Moreover, the most stable adsorption sites were used to calculate and plot noncovalent interactions. The obtained results are important as they give molecular insights regarding the nature of the interaction between GO surface and the adsorbent Cr(vi) ions. The found adsorption energy of −143.80 kcal/mol is indicative of the high adsorptive tendency of this material. The adsorption capacity value of GO toward these ions is q = 240.361 mg/g.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Shiyuan Gao ◽  
Hsiao-Yi Chen ◽  
Marco Bernardi

AbstractPoint defects in hexagonal boron nitride (hBN) have attracted growing attention as bright single-photon emitters. However, understanding of their atomic structure and radiative properties remains incomplete. Here we study the excited states and radiative lifetimes of over 20 native defects and carbon or oxygen impurities in hBN using ab initio density functional theory and GW plus Bethe-Salpeter equation calculations, generating a large data set of their emission energy, polarization and lifetime. We find a wide variability across quantum emitters, with exciton energies ranging from 0.3 to 4 eV and radiative lifetimes from ns to ms for different defect structures. Through a Bayesian statistical analysis, we identify various high-likelihood charge-neutral defect emitters, among which the native VNNB defect is predicted to possess emission energy and radiative lifetime in agreement with experiments. Our work advances the microscopic understanding of hBN single-photon emitters and introduces a computational framework to characterize and identify quantum emitters in 2D materials.


Sign in / Sign up

Export Citation Format

Share Document