scholarly journals Influence of height on endothelial maintenance activity: a narrative review

2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Yuji Shimizu ◽  
Takahiro Maeda

AbstractRecent studies have revealed an inverse association between height and cardiovascular disease. However, the background mechanism of this association has not yet been clarified. Height has also been reported to be positively associated with cancer. Therefore, well-known cardiovascular risk factors, such as increased oxidative stress and chronic inflammation, are not the best explanations for this inverse association because these risk factors are also related to cancer. However, impaired blood flow is the main pathological problem in cardiovascular disease, while glowing feeding vessels (angiogenesis) are the main characteristic of cancer pathologies. Therefore, endothelial maintenance activity, especially for the productivity of hematopoietic stem cells such as CD34-positive cells, could be associated with the height of an individual because this cell contributes not only to the progression of atherosclerosis but also to the development of angiogenesis. In addition, recent studies have also revealed a close connection between bone marrow activity and endothelial maintenance; bone marrow-derived hematopoietic stem cells contribute towards endothelial maintenance. Since the absolute volume of bone marrow is positively associated with height, height could influence endothelial maintenance activity. Based on these hypotheses, we performed several studies. The aim of this review is not only to discuss the association between height and bone marrow activity, but also to describe the potential mechanism underlying endothelial maintenance. In addition, this review also aims to explain some of the reasons that implicate hypertension as a major risk factor for stroke among the Japanese population. The review also aims to clarify the anthropological reasons behind the high risk of atherosclerosis progression in Japanese individuals with acquired genetic characteristics.

2020 ◽  
pp. 1-6
Author(s):  
Rebar N. Mohammed

Hematopoietic stem cells (HSCs) are a rare population of cells that reside mainly in the bone marrow and are capable of generating and fulfilling the entire hematopoietic system upon differentiation. Thirty-six healthy donors, attending the HSCT center to donate their bone marrow, were categorized according to their age into child (0–12 years), adolescence (13–18 years), and adult (19–59 years) groups, and gender into male and female groups. Then, the absolute number of HSCs and mature immune cells in their harvested bone marrow was investigated. Here, we report that the absolute cell number can vary considerably based on the age of the healthy donor, and the number of both HSCs and immune cells declines with advancing age. The gender of the donor (male or female) did not have any impact on the number of the HSCs and immune cells in the bone marrow. In conclusion, since the number of HSCs plays a pivotal role in the clinical outcome of allogeneic HSC transplantations, identifying a younger donor regardless the gender is critical.


Cell Reports ◽  
2012 ◽  
Vol 2 (4) ◽  
pp. 964-975 ◽  
Author(s):  
Heather A. Himburg ◽  
Jeffrey R. Harris ◽  
Takahiro Ito ◽  
Pamela Daher ◽  
J. Lauren Russell ◽  
...  

1987 ◽  
Vol 5 (3) ◽  
pp. 231-241 ◽  
Author(s):  
Vincent S. Gallicchio ◽  
Thomas D. Watts ◽  
George P. Casale ◽  
Philip M. Bartholomew

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 53-53
Author(s):  
Harini Nivarthi ◽  
Andrea Majoros ◽  
Eva Hug ◽  
Ruochen Jia ◽  
Sarada Achyutuni ◽  
...  

The curative potential of Type I interferons for patients suffering from Myeloproliferative Neoplasms (MPNs) has been reported and these are the only class of drugs that can lead to reduction of the mutant allelic burden in patients. However, modelling IFN treatment in mice has been challenging. Here, we report the use of murine pegylated IFNα (murine ropeginterferon-a, mRopeg) developed by PharmaEssentia (Taipei, Taiwan) to model IFN treatment in transgenic MPN mouse models. We started treating JAK2V617Ff/+;vavCre and control vavCre mice (n=6-8) with PBS or mRopeg (600 ng/mouse/week), by subcutaneous injections from the time they were 4 weeks old. The mice were bled every 2 weeks from the facial vein and the blood parameters were monitored. We observed significant normalization of platelet and WBC counts in Jak2-V617F fl/+ vavCre mice to wild type levels. No effect on hematocrit and hemoglobin level was observed in the Jak2-V617F fl/+ vavCre mice. VavCre control animals showed no sign of negative effect such as cytopenia during the entire treatment course. We observed a highly significant prolongation of the survival of mRopeg treated JAK2V617Ff/+;vavCre mice over a duration of 80 days of treatment. While all the PBS treated JAK2V617Ff/+;vavCre mice died within 60 days, all the mRopeg treated mice were still alive till the end of the treatment duration. We also generated a novel transgenic mouse model that conditionally expresses hybrid mutant CALR protein (murine exons 1-8 and human CALR del52 exon9) from the endogenous murine Calr locus. We bred them into vavCre background (in both heterozyhous and homozygous states) to induce expression of CALR-del52 in hematopoietic cells. Upon Cre recombinase expression, the endogenous murine exon 9 is replaced by the human del52 exon 9 and the expression of the humanized Calr-del52 oncoprotein is detectable by Western blot analysis using mutant CALR specific antibodies. Calr-del52 animals develop an essential thrombocythemia (ET) like phenotype when expressed in a heterozygous state with elevated number of hematopoietic stem cells and megakaryocytes in the bone marrow. In the homozygous state, the thrombocythemia is more severe with splenomegaly and older animals show anemia with increased WBC. Bone marrow histology shows megakaryocytic hyperplasia with no sign of fibrosis up to age of one year. We treated a cohort of animals with 600 ng mRopeg/PBS once a week for 4 weeks. Peripheral blood counts were determined at baseline and at regular intervals during treatment. At the end of treatment, mice were sacrificed, and splenic and bone marrow cells were immunophenotyped and quantified by FACS. We observed correction of thrombocythemia in the homozygous Calr-del52 mice but no unspecific decrease of platelet count in the vavCre mRopeg treated animals. We observed significant specific reduction of the long-term hematopoietic stem cells (LT-HSCs/fraction A) in homozygous CALR-del52 mice. In conclusion, Type I IFN treatment significantly reduces platelet counts to normal levels in both JAK2 and CALR mutant driven MPN mouse models. The prolongation of survival of JAK2V617F transgenic mice upon Type I IFN treatment is particularly remarkable; as no survival data is reported until now in any clinical trials or other animal models. Further experiments are required to understand the mechanism of action of this phenomenon. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document