scholarly journals OsIAGT1 Is a Glucosyltransferase Gene Involved in the Glucose Conjugation of Auxins in Rice

Rice ◽  
2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Qian Liu ◽  
Ting-Ting Chen ◽  
Dong-Wang Xiao ◽  
Shu-Man Zhao ◽  
Ji-Shan Lin ◽  
...  

Abstract Background In cereal crop rice, auxin is known as an important class of plant hormone that regulates a plethora of plant growth and development. Glycosylation of auxin is known to be one of the important mechanisms mediating auxin homeostasis. However, the relevant auxin glucosyltransferase (GT) in rice still remains largely unknown. Results In this study, using known auxin glucosyltransferases from other species as queries, twelve putative auxin UDP-glycosyltransferase (UGT) genes were cloned from rice and the one showing highest sequence similarity, named as OsIAGT1, was expressed as recombinant protein. In vitro enzymatic analysis showed that recombinant OsIAGT1 was capable of catalyzing glucosylation of IAA, IBA and other auxin analogs, and that OsIAGT1 is quite tolerant to a broad range of reaction conditions with peak activity at 30 °С and pH 8.0. OsIAGT1 showed favorite activity towards native auxins over artificially synthesized ones. Further study indicated that expression of OsIAGT1 can be upregulated by auxin in rice, and with OsIAGT1 overexpressing lines we confirmed that OsIAGT1 is indeed able to glucosylate IAA in vivo. Consistently, ectopic expression of OsIAGT1 leads to declined endogenous IAA content, as well as upregulated auxin synthesis genes and reduced expression of auxin-responsive genes, which likely leads to the reduced plant stature and root length in OsIAGT1 overexpression lines. Conclusion Our result indicated that OsIAGT1 plays an important role in mediating auxin homeostasis by catalyzing auxin glucosylation, and by which OsIAGT1 regulates growth and development in rice.

Plants ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 342 ◽  
Author(s):  
Jinsong Xiong ◽  
Yibo Bai ◽  
Chuangju Ma ◽  
Hongyu Zhu ◽  
Dan Zheng ◽  
...  

SQUAMOSA-promoter binding protein-like (SPL) proteins are plant-specific transcript factors that play essential roles in plant growth and development. Although many SPL genes have been well characterized in model plants like Arabidopsis, rice and tomato, the functions of SPLs in strawberry are still largely elusive. In the present study, we cloned and characterized FvSPL10, the ortholog of AtSPL9, from woodland strawberry. Subcellular localization shows FvSPL10 localizes in the cell nucleus. The luciferase system assay indicates FvSPL10 is a transcriptional activator, and both in vitro and in vivo assays indicate FvSPL10 could bind to the promoter of FvAP1 and activate its expression. Ectopic expression of FvSPL10 in Arabidopsis promotes early flowering and increases organs size. These results demonstrate the multiple regulatory roles of FvSPL10 in plant growth and development and lay a foundation for investigating the biological functions of FvSPL10 in strawberry.


1995 ◽  
Vol 74 (05) ◽  
pp. 1316-1322 ◽  
Author(s):  
Mary Ann McLane ◽  
Jagadeesh Gabbeta ◽  
A Koneti Rao ◽  
Lucia Beviglia ◽  
Robert A Lazarus ◽  
...  

SummaryNaturally-occurring fibrinogen receptor antagonists and platelet aggregation inhibitors that are found in snake venom (disintegrins) and leeches share many common features, including an RGD sequence, high cysteine content, and low molecular weight. There are, however, significant selectivity and potency differences. We compared the effect of three proteins on platelet function: albolabrin, a 7.5 kDa disintegrin, eristostatin, a 5.4 kDa disintegrin in which part of the disintegrin domain is deleted, and decorsin, a 4.5 kDa non-disintegrin derived from the leech Macrobdella decora, which has very little sequence similarity with either disintegrin. Decorsin was about two times less potent than albolabrin and six times less potent than eristostatin in inhibiting ADP- induced human platelet aggregation. It had a different pattern of interaction with glycoprotein IIb/IIIa as compared to the two disintegrins. Decorsin bound with a low affinity to resting platelets (409 nM) and to ADP-activated platelets (270 nM), and with high affinity to thrombin- activated platelets (74 nM). At concentrations up to 685 nM, it did not cause expression of a ligand-induced binding site epitope on the (β3 subunit of the GPIIb/IIIa complex. It did not significantly inhibit isolated GPIIb/IIIa binding to immobilized von Willebrand Factor. At low doses (1.5-3.0 μg/mouse), decorsin protected mice against death from pulmonary thromboembolism, showing an effect similar to eristostatin. This suggested that decorsin is a much more potent inhibitor of platelet aggregation in vivo than in vitro, and it may have potential as an antiplatelet drug.


2021 ◽  
Vol 30 ◽  
pp. 096368972097821
Author(s):  
Andrea Tenorio-Mina ◽  
Daniel Cortés ◽  
Joel Esquivel-Estudillo ◽  
Adolfo López-Ornelas ◽  
Alejandro Cabrera-Wrooman ◽  
...  

Human skin contains keratinocytes in the epidermis. Such cells share their ectodermal origin with the central nervous system (CNS). Recent studies have demonstrated that terminally differentiated somatic cells can adopt a pluripotent state, or can directly convert its phenotype to neurons, after ectopic expression of transcription factors. In this article we tested the hypothesis that human keratinocytes can adopt neural fates after culturing them in suspension with a neural medium. Initially, keratinocytes expressed Keratins and Vimentin. After neural induction, transcriptional upregulation of NESTIN, SOX2, VIMENTIN, SOX1, and MUSASHI1 was observed, concomitant with significant increases in NESTIN detected by immunostaining. However, in vitro differentiation did not yield the expression of neuronal or astrocytic markers. We tested the differentiation potential of control and neural-induced keratinocytes by grafting them in the developing CNS of rats, through ultrasound-guided injection. For this purpose, keratinocytes were transduced with lentivirus that contained the coding sequence of green fluorescent protein. Cell sorting was employed to select cells with high fluorescence. Unexpectedly, 4 days after grafting these cells in the ventricles, both control and neural-induced cells expressed green fluorescent protein together with the neuronal proteins βIII-Tubulin and Microtubule-Associated Protein 2. These results support the notion that in vivo environment provides appropriate signals to evaluate the neuronal differentiation potential of keratinocytes or other non-neural cell populations.


1998 ◽  
Vol 22 ◽  
pp. 306-308
Author(s):  
M. D. Carro ◽  
E. L. Miller

The estimation of rumen microbial protein synthesis is one of the main points in the nitrogen (N)-rationing systems for ruminants, as microbial protein provides proportionately 0.4 to 0.9 of amino acids entering the small intestine in ruminants receiving conventional diets (Russell et al., 1992). Methods of estimating microbial protein synthesis rely on marker techniques in which a particular microbial constituent is related to the microbial N content. Marker : N values have generally been established in mixed bacteria isolated from the liquid fraction of rumen digesta and it has been assumed that the same relationship holds in the total population leaving the rumen (Merry and McAllan, 1983). However, several studies have demonstrated differences in composition between solid-associated (SAB) and fluid-associated bacteria in vivo (Legay-Carmier and Bauchart, 1989) and in vitro (Molina Alcaide et al, 1996), as well in marker : N values (Pérez et al., 1996). This problem could be more pronounced in the in vitro semi-continuous culture system RUSITEC, in which there are three well defined components (a free liquid phase, a liquid phase associated with the solid phase and a solid phase), each one having associated microbial populations.The objective of this experiment was to investigate the effect of using different bacterial isolates (BI) on the estimation of microbial production of four different diets in RUSITEC (Czerkawski and Breckenridge, 1977), using (15NH4)2 SO4 as microbial marker, and to assess what effects any differences would have on the comparison of microbial protein synthesis between diets.This study was conducted in conjunction with an in vitro experiment described by Carro and Miller (1997). Two 14-day incubation trials were carried out with the rumen simulation technique RUSITEC (Czerkawski and Breckenridge, 1977). The general incubation procedure was the one described by Czerkawski and Breckenridge (1977) and more details about the procedures of this experiment are given elsewhere (Carro and Miller, 1997).


1985 ◽  
Vol 5 (3) ◽  
pp. 554-562 ◽  
Author(s):  
K G Miller ◽  
J Tower ◽  
B Sollner-Webb

To determine the size and location of the mouse rDNA promoter, we constructed systematic series of deletion mutants approaching the initiation site from the 5' and 3' directions. These templates were transcribed in vitro under various conditions with S-100 and whole-cell extracts. Surprisingly, the size of the rDNA region that determines the level of transcription differed markedly, depending on the reaction conditions. In both kinds of cell extracts, the apparent 5' border of the promoter was at residue ca. -27 under optimal transcription conditions, but as reaction conditions became less favorable, the 5' border moved progressively out to residues -35, -39, and -45. The complete promoter, however, extends considerably further, for under other nonoptimal conditions, we observed major effects of promoter domains extending in the 5' direction to positions ca. -100 and -140. In contrast, the apparent 3' border of the mouse rDNA promoter was at residue ca. +9 under all conditions examined. We also show that the subcloned rDNA region from -39 to +9 contains sufficient information to initiate accurately and that the region between +2 and +9 can influence the specificity of initiation. These data indicate that, although the polymerase I transcription factors recognize and accurately initiate with only the sequences downstream of residue -40, sequences extending out to residue -140 greatly favor the initiation reaction; presumably, this entire region is involved in rRNA transcription in vivo.


2000 ◽  
Vol 11 (7) ◽  
pp. 2459-2470 ◽  
Author(s):  
Lucy A. Stebbings ◽  
Martin G. Todman ◽  
Pauline Phelan ◽  
Jonathan P. Bacon ◽  
Jane A. Davies

Members of the innexin protein family are structural components of invertebrate gap junctions and are analogous to vertebrate connexins. Here we investigate two Drosophila innexin genes,Dm-inx2 and Dm-inx3 and show that they are expressed in overlapping domains throughout embryogenesis, most notably in epidermal cells bordering each segment. We also explore the gap-junction–forming capabilities of the encoded proteins. In pairedXenopus oocytes, the injection of Dm-inx2mRNA results in the formation of voltage-sensitive channels in only ∼ 40% of cell pairs. In contrast, Dm-Inx3 never forms channels. Crucially, when both mRNAs are coexpressed, functional channels are formed reliably, and the electrophysiological properties of these channels distinguish them from those formed by Dm-Inx2 alone. We relate these in vitro data to in vivo studies. Ectopic expression ofDm-inx2 in vivo has limited effects on the viability ofDrosophila, and animals ectopically expressingDm-inx3 are unaffected. However, ectopic expression of both transcripts together severely reduces viability, presumably because of the formation of inappropriate gap junctions. We conclude that Dm-Inx2 and Dm-Inx3, which are expressed in overlapping domains during embryogenesis, can form oligomeric gap-junction channels.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shanghui Jin ◽  
Bingkai Hou ◽  
Guizhi Zhang

AbstractLeaf angle is an important agronomic trait affecting photosynthesis efficiency and crop yield. Although the mechanisms involved in the leaf angle control are intensively studied in monocots, factors contribute to the leaf angle in dicots are largely unknown. In this article, we explored the physiological roles of an Arabidopsis glucosyltransferase, UGT74D1, which have been proved to be indole-3-acetic acid (IAA) glucosyltransferase in vitro. We found that UGT74D1 possessed the enzymatic activity toward IAA glucosylation in vivo and its expression was induced by auxins. The ectopically expressed UGT74D1 obviously reduced the leaf angle with an altered IAA level, auxin distribution and cell size in leaf tissues. The expression of several key genes involved in the leaf shaping and leaf positioning, including PHYTOCHROME KINASE SUBSTRATE (PKS) genes and TEOSINTE BRANCHED1, CYCLOIDEA, and PCF (TCP) genes, were dramatically changed by ectopic expression of UGT74D1. In addition, clear transcription changes of YUCCA genes and other auxin related genes can be observed in overexpression lines. Taken together, our data indicate that glucosyltransferase UGT74D1 could affect leaf positioning through modulating auxin homeostasis and regulating transcription of PKS and TCP genes, suggesting a potential new role of UGT74D1 in regulation of leaf angle in dicot Arabidopsis.


2015 ◽  
Vol 59 (4) ◽  
pp. 2113-2121 ◽  
Author(s):  
U. Malik ◽  
O. N. Silva ◽  
I. C. M. Fensterseifer ◽  
L. Y. Chan ◽  
R. J. Clark ◽  
...  

ABSTRACTStaphylococcus aureusis a virulent pathogen that is responsible for a wide range of superficial and invasive infections. Its resistance to existing antimicrobial drugs is a global problem, and the development of novel antimicrobial agents is crucial. Antimicrobial peptides from natural resources offer potential as new treatments against staphylococcal infections. In the current study, we have examined the antimicrobial properties of peptides isolated from anuran skin secretions and cyclized synthetic analogues of these peptides. The structures of the peptides were elucidated by nuclear magnetic resonance (NMR) spectroscopy, revealing high structural and sequence similarity with each other and with sunflower trypsin inhibitor 1 (SFTI-1). SFTI-1 is an ultrastable cyclic peptide isolated from sunflower seeds that has subnanomolar trypsin inhibitory activity, and this scaffold offers pharmaceutically relevant characteristics. The five anuran peptides were nonhemolytic and noncytotoxic and had trypsin inhibitory activities similar to that of SFTI-1. They demonstrated weakin vitroinhibitory activities againstS. aureus, but several had strong antibacterial activities againstS. aureusin anin vivomurine wound infection model. pYR, an immunomodulatory peptide fromRana sevosa, was the most potent, with complete bacterial clearance at 3 mg · kg−1. Cyclization of the peptides improved their stability but was associated with a concomitant decrease in antimicrobial activity. In summary, these anuran peptides are promising as novel therapeutic agents for treating infections from a clinically resistant pathogen.


1998 ◽  
Vol 275 (3) ◽  
pp. C870-C881 ◽  
Author(s):  
Ichiro Hisatome ◽  
Takayuki Morisaki ◽  
Hiroshi Kamma ◽  
Takako Sugama ◽  
Hiroko Morisaki ◽  
...  

AMP deaminase (AMPD) plays a central role in preserving the adenylate energy charge in myocytes following exercise and in producing intermediates for the citric acid cycle in muscle. Prior studies have demonstrated that AMPD1 binds to myosin heavy chain (MHC) in vitro; binding to the myofibril varies with the state of muscle contraction in vivo, and binding of AMPD1 to MHC is required for activation of this enzyme in myocytes. The present study has identified three domains in AMPD1 that influence binding of this enzyme to MHC using a cotransfection model that permits assessment of mutations introduced into the AMPD1 peptide. One domain that encompasses residues 178–333 of this 727-amino acid peptide is essential for binding of AMPD1 to MHC. This region of AMPD1 shares sequence similarity with several regions of titin, another MHC binding protein. Two additional domains regulate binding of this peptide to MHC in response to intracellular and extracellular signals. A nucleotide binding site, which is located at residues 660–674, controls binding of AMPD1 to MHC in response to changes in intracellular ATP concentration. Deletion analyses demonstrate that the amino-terminal 65 residues of AMPD1 play a critical role in modulating the sensitivity to ATP-induced inhibition of MHC binding. Alternative splicing of the AMPD1 gene product, which alters the sequence of residues 8–12, produces two AMPD1 isoforms that exhibit different MHC binding properties in the presence of ATP. These findings are discussed in the context of the various roles proposed for AMPD in energy production in the myocyte.


Sign in / Sign up

Export Citation Format

Share Document