scholarly journals PEIS: a novel approach of tumor purity estimation by identifying information sites through integrating signal based on DNA methylation data

2019 ◽  
Vol 20 (S22) ◽  
Author(s):  
Shudong Wang ◽  
Lihua Wang ◽  
Yuanyuan Zhang ◽  
Shanchen Pang ◽  
Xinzeng Wang

Abstract Background Tumor purity plays an important role in understanding the pathogenic mechanism of tumors. The purity of tumor samples is highly sensitive to tumor heterogeneity. Due to Intratumoral heterogeneity of genetic and epigenetic data, it is suitable to study the purity of tumors. Among them, there are many purity estimation methods based on copy number variation, gene expression and other data, while few use DNA methylation data and often based on selected information sites. Consequently, how to choose methylation sites as information sites has an important influence on the purity estimation results. At present, the selection of information sites was often based on the differentially methylated sites that only consider the mean signal, without considering other possible signals and the strong correlation among adjacent sites. Results Considering integrating multi-signals and strong correlation among adjacent sites, we propose an approach, PEIS, to estimate the purity of tumor samples by selecting informative differential methylation sites. Application to 12 publicly available tumor datasets, it is shown that PEIS provides accurate results in the estimation of tumor purity which has a high consistency with other existing methods. Also, through comparing the results of different information sites selection methods in the evaluation of tumor purity, it shows the PEIS is superior to other methods. Conclusions A new method to estimate the purity of tumor samples is proposed. This approach integrates multi-signals of the CpG sites and the correlation between the sites. Experimental analysis shows that this method is in good agreement with other existing methods for estimating tumor purity.

2020 ◽  
Vol 18 (05) ◽  
pp. 2050027
Author(s):  
Shanchen Pang ◽  
Lihua Wang ◽  
Shudong Wang ◽  
Yuanyuan Zhang ◽  
Xinzeng Wang

Background: Tumor purity is of great significance for the study of tumor genotyping and the prediction of recurrence, which is significantly affected by tumor heterogeneity. Tumor heterogeneity is the basis of drug resistance in various cancer treatments, and DNA methylation plays a core role in the generation of tumor heterogeneity. Almost all types of cancer cells are associated with abnormal DNA methylation in certain regions of the genome. The selection of tumor-related differential methylation sites, which can be used as an indicator of tumor purity, has important implications for purity assessment. At present, the selection of information sites mostly focuses on inter-tumor heterogeneity and ignores the heterogeneity of tumor growth space that is sample specificity. Results: Considering the specificity of tumor samples and the information gain of individual tumor sample relative to the normal samples, we present an approach, PESM, to evaluate the tumor purity through the specificity difference methylation sites of tumor samples. Applied to more than 200 tumor samples of Prostate adenocarcinoma (PRAD) and Kidney renal clear cell carcinoma (KIRC), it shows that the tumor purity estimated by PESM is highly consistent with other existing methods. In addition, PESM performs better than the method that uses the integrated signal of methylation sites to estimate purity. Therefore, different information sites selection methods have an important impact on the estimation of tumor purity, and the selection of sample specific information sites has a certain significance for accurate identification of tumor purity of samples.


2010 ◽  
Vol 20 (12) ◽  
pp. 1719-1729 ◽  
Author(s):  
M. D. Robinson ◽  
C. Stirzaker ◽  
A. L. Statham ◽  
M. W. Coolen ◽  
J. Z. Song ◽  
...  

2019 ◽  
Vol 35 (19) ◽  
pp. 3786-3793 ◽  
Author(s):  
Pietro Di Lena ◽  
Claudia Sala ◽  
Andrea Prodi ◽  
Christine Nardini

Abstract Motivation DNA methylation is a stable epigenetic mark with major implications in both physiological (development, aging) and pathological conditions (cancers and numerous diseases). Recent research involving methylation focuses on the development of molecular age estimation methods based on DNA methylation levels (mAge). An increasing number of studies indicate that divergences between mAge and chronological age may be associated to age-related diseases. Current advances in high-throughput technologies have allowed the characterization of DNA methylation levels throughout the human genome. However, experimental methylation profiles often contain multiple missing values that can affect the analysis of the data and also mAge estimation. Although several imputation methods exist, a major deficiency lies in the inability to cope with large datasets, such as DNA methylation chips. Specific methods for imputing missing methylation data are therefore needed. Results We present a simple and computationally efficient imputation method, metyhLImp, based on linear regression. The rationale of the approach lies in the observation that methylation levels show a high degree of inter-sample correlation. We performed a comparative study of our approach with other imputation methods on DNA methylation data of healthy and disease samples from different tissues. Performances have been assessed both in terms of imputation accuracy and in terms of the impact imputed values have on mAge estimation. In comparison to existing methods, our linear regression model proves to perform equally or better and with good computational efficiency. The results of our analysis provide recommendations for accurate estimation of missing methylation values. Availability and implementation The R-package methyLImp is freely available at https://github.com/pdilena/methyLImp. Supplementary information Supplementary data are available at Bioinformatics online.


2017 ◽  
Vol 33 (17) ◽  
pp. 2651-2657 ◽  
Author(s):  
Weiwei Zhang ◽  
Hao Feng ◽  
Hao Wu ◽  
Xiaoqi Zheng

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Lauren A. Vanderlinden ◽  
Randi K. Johnson ◽  
Patrick M. Carry ◽  
Fran Dong ◽  
Dawn L. DeMeo ◽  
...  

Abstract Objective Illumina BeadChip arrays are commonly used to generate DNA methylation data for large epidemiological studies. Updates in technology over time create challenges for data harmonization within and between studies, many of which obtained data from the older 450K and newer EPIC platforms. The pre-processing pipeline for DNA methylation is not trivial, and influences the downstream analyses. Incorporating different platforms adds a new level of technical variability that has not yet been taken into account by recommended pipelines. Our study evaluated the performance of various tools on different versions of platform data harmonization at each step of pre-processing pipeline, including quality control (QC), normalization, batch effect adjustment, and genomic inflation. We illustrate our novel approach using 450K and EPIC data from the Diabetes Autoimmunity Study in the Young (DAISY) prospective cohort. Results We found normalization and probe filtering had the biggest effect on data harmonization. Employing a meta-analysis was an effective and easily executable method for accounting for platform variability. Correcting for genomic inflation also helped with harmonization. We present guidelines for studies seeking to harmonize data from the 450K and EPIC platforms, which includes the use of technical replicates for evaluating numerous pre-processing steps, and employing a meta-analysis.


2020 ◽  
Author(s):  
Lauren A Vanderlinden ◽  
Randi K Johnson ◽  
Patrick M Carry ◽  
Fran Dong ◽  
Dawn L. DeMeo ◽  
...  

Abstract Objective: Illumina BeadChip arrays are commonly used to generate DNA methylation data for large epidemiological studies. Updates in technology over time create challenges for data harmonization within and between studies, many of which obtained data from the older 450K and newer EPIC platforms. The pre-processing pipeline for DNA methylation is not trivial, and influences the downstream analyses. Incorporating different platforms adds a new level of technical variability that has not yet been taken into account by recommended pipelines. Our study evaluated the performance of various tools on different versions of platform data harmonization at each step of pre-processing pipeline, including quality control (QC), normalization, batch effect adjustment, and genomic inflation. We illustrate our novel approach using 450K and EPIC data from the Diabetes Autoimmunity Study in the Young (DAISY) prospective cohort. Results: We found normalization and probe filtering had the biggest effect on data harmonization. Employing a meta-analysis was an effective and easily executable method for accounting for platform variability. Correcting for genomic inflation also helped with harmonization. We present guidelines for studies seeking to harmonize data from the 450K and EPIC platforms, which includes the use of technical replicates for evaluating numerous pre-processing steps, and employing a meta-analysis.


Author(s):  
Behnam Jahangiri ◽  
Punyaslok Rath ◽  
Hamed Majidifard ◽  
William G. Buttlar

Various agencies have begun to research and introduce performance-related specifications (PRS) for the design of modern asphalt paving mixtures. The focus of most recent studies has been directed toward simplified cracking test development and evaluation. In some cases, development and validation of PRS has been performed, building on these new tests, often by comparison of test values to accelerated pavement test studies and/or to limited field data. This study describes the findings of a comprehensive research project conducted at Illinois Tollway, leading to a PRS for the design of mainline and shoulder asphalt mixtures. A novel approach was developed, involving the systematic establishment of specification requirements based on: 1) selection of baseline values based on minimally acceptable field performance thresholds; 2) elevation of thresholds to account for differences between short-term lab aging and expected long-term field aging; 3) further elevation of thresholds to account for variability in lab testing, plus variability in the testing of field cores; and 4) final adjustment and rounding of thresholds based on a consensus process. After a thorough evaluation of different candidate cracking tests in the course of the project, the Disk-shaped Compact Tension—DC(T)—test was chosen to be retained in the Illinois Tollway PRS and to be presented in this study for the design of crack-resistant mixtures. The DC(T) test was selected because of its high degree of correlation with field results and its excellent repeatability. Tailored Hamburg rut depth and stripping inflection point thresholds were also established for mainline and shoulder mixes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hanyu Zhang ◽  
Ruoyi Cai ◽  
James Dai ◽  
Wei Sun

AbstractWe introduce a new computational method named EMeth to estimate cell type proportions using DNA methylation data. EMeth is a reference-based method that requires cell type-specific DNA methylation data from relevant cell types. EMeth improves on the existing reference-based methods by detecting the CpGs whose DNA methylation are inconsistent with the deconvolution model and reducing their contributions to cell type decomposition. Another novel feature of EMeth is that it allows a cell type with known proportions but unknown reference and estimates its methylation. This is motivated by the case of studying methylation in tumor cells while bulk tumor samples include tumor cells as well as other cell types such as infiltrating immune cells, and tumor cell proportion can be estimated by copy number data. We demonstrate that EMeth delivers more accurate estimates of cell type proportions than several other methods using simulated data and in silico mixtures. Applications in cancer studies show that the proportions of T regulatory cells estimated by DNA methylation have expected associations with mutation load and survival time, while the estimates from gene expression miss such associations.


Sign in / Sign up

Export Citation Format

Share Document