scholarly journals M2PP: a novel computational model for predicting drug-targeted pathogenic proteins

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Shiming Wang ◽  
Jie Li ◽  
Yadong Wang

Abstract Background Detecting pathogenic proteins is the origin way to understand the mechanism and resist the invasion of diseases, making pathogenic protein prediction develop into an urgent problem to be solved. Prediction for genome-wide proteins may be not necessarily conducive to rapidly cure diseases as developing new drugs specifically for the predicted pathogenic protein always need major expenditures on time and cost. In order to facilitate disease treatment, computational method to predict pathogenic proteins which are targeted by existing drugs should be exploited. Results In this study, we proposed a novel computational model to predict drug-targeted pathogenic proteins, named as M2PP. Three types of features were presented on our constructed heterogeneous network (including target proteins, diseases and drugs), which were based on the neighborhood similarity information, drug-inferred information and path information. Then, a random forest regression model was trained to score unconfirmed target-disease pairs. Five-fold cross-validation experiment was implemented to evaluate model’s prediction performance, where M2PP achieved advantageous results compared with other state-of-the-art methods. In addition, M2PP accurately predicted high ranked pathogenic proteins for common diseases with public biomedical literature as supporting evidence, indicating its excellent ability. Conclusions M2PP is an effective and accurate model to predict drug-targeted pathogenic proteins, which could provide convenience for the future biological researches.

Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 354
Author(s):  
Lu Zhang ◽  
Xinyi Qin ◽  
Min Liu ◽  
Ziwei Xu ◽  
Guangzhong Liu

As a prevalent existing post-transcriptional modification of RNA, N6-methyladenosine (m6A) plays a crucial role in various biological processes. To better radically reveal its regulatory mechanism and provide new insights for drug design, the accurate identification of m6A sites in genome-wide is vital. As the traditional experimental methods are time-consuming and cost-prohibitive, it is necessary to design a more efficient computational method to detect the m6A sites. In this study, we propose a novel cross-species computational method DNN-m6A based on the deep neural network (DNN) to identify m6A sites in multiple tissues of human, mouse and rat. Firstly, binary encoding (BE), tri-nucleotide composition (TNC), enhanced nucleic acid composition (ENAC), K-spaced nucleotide pair frequencies (KSNPFs), nucleotide chemical property (NCP), pseudo dinucleotide composition (PseDNC), position-specific nucleotide propensity (PSNP) and position-specific dinucleotide propensity (PSDP) are employed to extract RNA sequence features which are subsequently fused to construct the initial feature vector set. Secondly, we use elastic net to eliminate redundant features while building the optimal feature subset. Finally, the hyper-parameters of DNN are tuned with Bayesian hyper-parameter optimization based on the selected feature subset. The five-fold cross-validation test on training datasets show that the proposed DNN-m6A method outperformed the state-of-the-art method for predicting m6A sites, with an accuracy (ACC) of 73.58%–83.38% and an area under the curve (AUC) of 81.39%–91.04%. Furthermore, the independent datasets achieved an ACC of 72.95%–83.04% and an AUC of 80.79%–91.09%, which shows an excellent generalization ability of our proposed method.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qiu Sun ◽  
Alan Perez-Rathke ◽  
Daniel M. Czajkowsky ◽  
Zhifeng Shao ◽  
Jie Liang

AbstractSingle-cell chromatin studies provide insights into how chromatin structure relates to functions of individual cells. However, balancing high-resolution and genome wide-coverage remains challenging. We describe a computational method for the reconstruction of large 3D-ensembles of single-cell (sc) chromatin conformations from population Hi-C that we apply to study embryogenesis in Drosophila. With minimal assumptions of physical properties and without adjustable parameters, our method generates large ensembles of chromatin conformations via deep-sampling. Our method identifies specific interactions, which constitute 5–6% of Hi-C frequencies, but surprisingly are sufficient to drive chromatin folding, giving rise to the observed Hi-C patterns. Modeled sc-chromatins quantify chromatin heterogeneity, revealing significant changes during embryogenesis. Furthermore, >50% of modeled sc-chromatin maintain topologically associating domains (TADs) in early embryos, when no population TADs are perceptible. Domain boundaries become fixated during development, with strong preference at binding-sites of insulator-complexes upon the midblastula transition. Overall, high-resolution 3D-ensembles of sc-chromatin conformations enable further in-depth interpretation of population Hi-C, improving understanding of the structure-function relationship of genome organization.


PLoS ONE ◽  
2017 ◽  
Vol 12 (1) ◽  
pp. e0168912 ◽  
Author(s):  
Jue Wang ◽  
Yejun Wang ◽  
Caiji Gao ◽  
Liwen Jiang ◽  
Dianjing Guo

2020 ◽  
Author(s):  
Claire Marchal ◽  
Nivedita Singh ◽  
Ximena Corso-Díaz ◽  
Anand Swaroop

AbstractThree-dimensional (3D) conformation of the chromatin is crucial to stringently regulate gene expression patterns and DNA replication in a cell-type specific manner. HiC is a key technique for measuring 3D chromatin interactions genome wide. Estimating and predicting the resolution of a library is an essential step in any HiC experimental design. Here, we present the mathematical concepts to estimate the resolution of a library and predict whether deeper sequencing would enhance the resolution. We have developed HiCRes, a docker pipeline, by applying these concepts to human and mouse HiC libraries.


2020 ◽  
Vol 21 (S5) ◽  
Author(s):  
Qing Xie ◽  
Kyoung Min Yang ◽  
Go Eun Heo ◽  
Min Song

Abstract Background In recent years, Traditional Chinese Medicine (TCM) and alternative medicine have been widely used along with western drugs as a complementary form of treatment. In this study, we first use the scientific literature to identify western drugs with obvious side effects. Then, we find TCM alternatives for these western drugs to ameliorate their side effects. Results We used depression as a case study. To evaluate our method, we showed the relation between herb-ingredients-target-disease for representative alternative herbs of western drugs. Further, a protein-protein interaction network of western drugs and alternative herbs was produced, and we performed enrichment analysis of the targets of the active ingredients of the herbs and examined the enrichment of Gene Ontology terms for Biological Process, Cellular Component, and Molecular Function and KEGG Pathway levels, to show how these targets affect different levels of gene expression. Conclusion Our proposed method is able to select herbs that are highly relevant to the target indication (depression) and are able to treat the side effects caused by the target drug. The compounds from our selected alternative herbal medicines can therefore be complementary to the western drugs and ameliorate their side effects, which may help in the development of new drugs.


2019 ◽  
Vol 36 (6) ◽  
pp. 1704-1711
Author(s):  
Artur Jaroszewicz ◽  
Jason Ernst

Abstract Motivation Chromatin interactions play an important role in genome architecture and gene regulation. The Hi-C assay generates such interactions maps genome-wide, but at relatively low resolutions (e.g. 5-25 kb), which is substantially coarser than the resolution of transcription factor binding sites or open chromatin sites that are potential sources of such interactions. Results To predict the sources of Hi-C-identified interactions at a high resolution (e.g. 100 bp), we developed a computational method that integrates data from DNase-seq and ChIP-seq of TFs and histone marks. Our method, χ-CNN, uses this data to first train a convolutional neural network (CNN) to discriminate between called Hi-C interactions and non-interactions. χ-CNN then predicts the high-resolution source of each Hi-C interaction using a feature attribution method. We show these predictions recover original Hi-C peaks after extending them to be coarser. We also show χ-CNN predictions enrich for evolutionarily conserved bases, eQTLs and CTCF motifs, supporting their biological significance. χ-CNN provides an approach for analyzing important aspects of genome architecture and gene regulation at a higher resolution than previously possible. Availability and implementation χ-CNN software is available on GitHub (https://github.com/ernstlab/X-CNN). Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Yu Kong ◽  
Christopher M. Rose ◽  
Ashley A. Cass ◽  
Alexander G. Williams ◽  
Martine Darwish ◽  
...  

AbstractProfound global loss of DNA methylation is a hallmark of many cancers. One potential consequence of this is the reactivation of transposable elements (TEs) which could stimulate the immune system via cell-intrinsic antiviral responses. Here, we develop REdiscoverTE, a computational method for quantifying genome-wide TE expression in RNA sequencing data. Using The Cancer Genome Atlas database, we observe increased expression of over 400 TE subfamilies, of which 262 appear to result from a proximal loss of DNA methylation. The most recurrent TEs are among the evolutionarily youngest in the genome, predominantly expressed from intergenic loci, and associated with antiviral or DNA damage responses. Treatment of glioblastoma cells with a demethylation agent results in both increased TE expression and de novo presentation of TE-derived peptides on MHC class I molecules. Therapeutic reactivation of tumor-specific TEs may synergize with immunotherapy by inducing inflammation and the display of potentially immunogenic neoantigens.


2016 ◽  
Vol 23 (4) ◽  
pp. 766-772 ◽  
Author(s):  
Ayush Singhal ◽  
Michael Simmons ◽  
Zhiyong Lu

Abstract Objective Identifying disease-mutation relationships is a significant challenge in the advancement of precision medicine. The aim of this work is to design a tool that automates the extraction of disease-related mutations from biomedical text to advance database curation for the support of precision medicine. Materials and Methods We developed a machine-learning (ML) based method to automatically identify the mutations mentioned in the biomedical literature related to a particular disease. In order to predict a relationship between the mutation and the target disease, several features, such as statistical features, distance features, and sentiment features, were constructed. Our ML model was trained with a pre-labeled dataset consisting of manually curated information about mutation-disease associations. The model was subsequently used to extract disease-related mutations from larger biomedical literature corpora. Results The performance of the proposed approach was assessed using a benchmarking dataset. Results show that our proposed approach gains significant improvement over the previous state of the art and obtains F-measures of 0.880 and 0.845 for prostate and breast cancer mutations, respectively. Discussion To demonstrate its utility, we applied our approach to all abstracts in PubMed for 3 diseases (including a non-cancer disease). The mutations extracted were then manually validated against human-curated databases. The validation results show that the proposed approach is useful in a real-world setting to extract uncurated disease mutations from the biomedical literature. Conclusions The proposed approach improves the state of the art for mutation-disease extraction from text. It is scalable and generalizable to identify mutations for any disease at a PubMed scale.


2019 ◽  
Vol 20 (S15) ◽  
Author(s):  
Hongda Bu ◽  
Jiaqi Hao ◽  
Yanglan Gan ◽  
Shuigeng Zhou ◽  
Jihong Guan

Abstract Background Super-enhancers (SEs) are clusters of transcriptional active enhancers, which dictate the expression of genes defining cell identity and play an important role in the development and progression of tumors and other diseases. Many key cancer oncogenes are driven by super-enhancers, and the mutations associated with common diseases such as Alzheimer’s disease are significantly enriched with super-enhancers. Super-enhancers have shown great potential for the identification of key oncogenes and the discovery of disease-associated mutational sites. Results In this paper, we propose a new computational method called DEEPSEN for predicting super-enhancers based on convolutional neural network. The proposed method integrates 36 kinds of features. Compared with existing approaches, our method performs better and can be used for genome-wide prediction of super-enhancers. Besides, we screen important features for predicting super-enhancers. Conclusion Convolutional neural network is effective in boosting the performance of super-enhancer prediction.


2019 ◽  
Author(s):  
Yoo-Ah Kim ◽  
Rebecca Sarto Basso ◽  
Damian Wojtowicz ◽  
Dorit S. Hochbaum ◽  
Fabio Vandin ◽  
...  

AbstractPhenotypic heterogeneity in cancer is often caused by different patterns of genetic alterations. Understanding such phenotype-genotype relationships is fundamental for the advance of personalized medicine. One of the important challenges in the area is to predict drug response on a personalized level. The pathway-centric view of cancer significantly advanced the understanding of genotype-phenotype relationships. However, most of network identification methods in cancer focus on identifying subnetworks that include general cancer drivers or are associated with discrete features such as cancer subtypes, hence cannot be applied directly for the analysis of continuous features like drug response. On the other hand, existing genome wide association approaches do not fully utilize the complex proprieties of cancer mutational landscape. To address these challenges, we propose a computational method, named NETPHLIX (NETwork-to-PHenotpe mapping LeveragIng eXlusivity), which aims to identify mutated subnetworks that are associated with drug response (or any continuous cancer phenotype). Utilizing properties such as mutual exclusivity and interactions among genes, we formulate the problem as an integer linear program and solve it optimally to obtain a set of genes satisfying the constraints. NETPHLIX identified gene modules significantly associated with many drugs, including interesting response modules to MEK1/2 inhibitors in both directions (increased and decreased sensitivity to the drug) that the previous method, which does not utilize network information, failed to identify. The genes in the modules belong to MAPK/ERK signaling pathway, which is the targeted pathway of the drug.


Sign in / Sign up

Export Citation Format

Share Document