scholarly journals Characterization and discovery of miRNA and miRNA targets from apomictic and sexual genotypes of Eragrostis curvula

BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Ingrid Garbus ◽  
Juan Pablo Selva ◽  
María Cielo Pasten ◽  
Andrés Martín Bellido ◽  
José Carballo ◽  
...  

Abstract Background Weeping lovegrass (Eragrostis curvula [Shrad.] Nees) is a perennial grass found in semi-arid regions that is well adapted for growth in sandy soils and drought conditions. E. curvula constitutes a polymorphic complex that includes cytotypes with different ploidy levels (from 2x to 8x), where most polyploids are facultative apomicts, although both sexual reproduction and full apomixis have been reported in this species. Apomixis is thought to be associated with silencing of the sexual pathway, which would involve epigenetic mechanisms. However, a correlation between small RNAs and apomixis has not yet been conclusively established. Results Aiming to contribute to the elucidation of their role in the expression of apomixis, we constructed small RNA libraries from sexual and apomictic E. curvula genotypes via Illumina technology, characterized the small RNA populations, and conducted differential expression analysis by comparing these small RNAs with the E. curvula reference transcriptome. We found that the expression of two genes is repressed in the sexual genotype, which is associated with specific microRNA expression. Conclusion Our results support the hypothesis that in E. curvula the expression of apomixis leads to sexual repression.

2000 ◽  
Vol 134 (2) ◽  
pp. 207-212 ◽  
Author(s):  
M. A. DI RENZO ◽  
M. A. IBAÑEZ ◽  
N. C. BONAMICO ◽  
M. M. POVERENE

Eragrostis curvula (Schrad.) Nees s. lat., a highly polymorphic polyploid complex, can be considered as one of the most important warm season perennial grasses for the semi-arid regions of central Argentina. In apomictically propagated and perennial plants such as weeping lovegrass, where successive measurements can be done across time, repeatability estimates provide an indication of the degree of influence of permanent effects on the phenotypic variation and allow prediction of future performance from past records. Analysis of variance of the experiment showed highly significant variation (P < 0·01) for the main factors in all four traits. Although there was very high variability between cuts, hybrids of E. curvula exhibited considerable inter-entry variability, in particular for those traits determining forage yield. Repeatability calculated in this experiment was highest for the crown diameter (0·86), leaf length (0·84) and dry matter (0·84), while in panicle number (0·66) it was lowest. Repeatability estimates for the vegetative characteristics indicate small effects of temporal environment. The four traits studied, including panicle number with their moderate repeatability, do not require an essentially different number of observations to obtain measures at the same level of accuracy. For vegetative characters two harvests provided 98% of the accuracy of the total obtained with four cuts, and for panicle number the same percentage was obtained for three harvests. This stability of performance is a desirable characteristic for grass cultivars. Patterns of trait associations were also described. Because leaf length is closely associated with dry matter and has high repeatability, to use leaf length as an indirect evaluation criterion should be almost as efficient as direct evaluation for aerial biomass yield. Reliable estimates of parameters such as repeatability and phenotypic correlation are needed for prediction of production values and for the design of efficient improvement programmes. For genotype evaluation additional research is required to quantify the extent of genotype × environment interaction across years and localities of semi-arid regions.


2005 ◽  
Vol 27 (1) ◽  
pp. 1 ◽  
Author(s):  
R. D. B. Whalley ◽  
D. A. Friend ◽  
P. Sanford ◽  
M. L. Mitchell

The historical approach to pasture improvement in the high rainfall zone of temperate Australia has been to add introduced herbaceous legumes and to replace perennial native grasses with introduced species requiring high inputs of fertiliser for maintenance. The application of this high-input approach on land with low capability has lead to the loss of perennial grasses, erosion, soil acidification and increasing salinity on the lower slopes. This model of pasture improvement has not been successful on the margins of the wheat belt and in semi-arid regions. The Native and Low-input Grasses Network (NLIGN) was established in 1996 to coordinate research on grasses suitable for land with low capability and for semi-arid regions. The NLIGN multi-site evaluation project was initiated to test promising lines (accessions) of native and introduced grasses for low-input pastures at eight sites across southern Australia. The broad objective of the project was to identify native and/or introduced perennial grass lines that had possible commercial potential for low-input pastures. This objective was achieved in an initial 3-year evaluation phase, which began in 1998 and tested lines for persistence, production and palatability.


2019 ◽  
Vol 112 ◽  
pp. 03014 ◽  
Author(s):  
Iulian Draghici ◽  
Reta Draghici ◽  
Aurelia Diaconu ◽  
Mihaela Croitoru ◽  
Alina Nicoleta Paraschiv ◽  
...  

Sorghum bicolor L. Moench is a herbaceous annual C4-type plant, with a high ecological plasticity because it can be grown in tropical, subtropical, temperate and semi-arid regions, harnessing soils with reduced natural fertility, from the category of sandy soils. Studies on 5 sweet sorghum hybrids studied under psamosols in southern Oltenia highlight a bioenergy potential in the milk-wax phase of the grain, ranging from 60847.4-89338.65 Mcal / ha, with a maximum in the hybrid Shaşm 2, which achieved a distinctly significant difference in production, compared to the average production of hybrids. The results recorded in sugar sorghum production were positively correlated, significantly distinct with leaf index determined during the flowering of the plants (r = 0.9854**).


2010 ◽  
Vol 36 (1) ◽  
pp. 89-98 ◽  
Author(s):  
Abderazak Djabeur ◽  
Meriem Kaid-Harche ◽  
Daniel Côme ◽  
Françoise Corbineau

2020 ◽  
Vol 76 (11) ◽  
Author(s):  
Senni Rachida ◽  
De Belair Gerard ◽  
Abdelkrim Hacene
Keyword(s):  

1987 ◽  
Vol 19 (9) ◽  
pp. 97-106
Author(s):  
J. J. Vasconcelos

Hater resource managers in semi-arid regions are faced with some unique problems. The wide variations in precipitation and stream flows in semi-arid regions increase man's dependence on the ground water resource for an ample and reliable supply of water. Proper management of the ground water resource is absolutely essential to the economic well being of semi-arid regions. Historians have discovered the remains of vanished advanced civilizations based on irrigated agriculture which were ignorant of the importance of proper ground water resource management. In the United States a great deal of effort is presently being expended in the study and control of toxic discharges to the ground water resource. What many public policy makers fail to understand is that the potential loss to society resulting from the mineralization of the ground water resource is potentially much greater than the loss caused by toxic wastes discharges, particularly in developing countries. Appropriations for ground water resource management studies in developed countries such as the United States are presently much less than those for toxic wastes management and should be increased. It is the reponsibility of the water resource professional to emphasize to public policy makers the importance of ground water resource management. Applications of ground water resource management models in the semi-arid Central Valley of California are presented. The results demonstrate the need for proper ground water resource management practices in semi-arid regions and the use of ground water management models as a valuable tool for the water resource manager.


Author(s):  
Mohammad Abdul Kader ◽  
Ashutus Singha ◽  
Mili Amena Begum ◽  
Arif Jewel ◽  
Ferdous Hossain Khan ◽  
...  

Abstract Agricultural water resources have been limited over the years due to global warming and irregular rainfall in the arid and semi-arid regions. To mitigate the water stress in agriculture, mulching has a crucial impact as a water-saving technique in rain-fed crop cultivation. It is important mainly for preserving soil moisture, relegating soil temperature, and limiting soil evaporation, which affects the crop yield. Mulching has many strategic effects on soil ecosystem, crop growth, and climate. Mulch insulates the soil, helping to provide a buffer from cold and hot temperatures that have a crucial activity in creating beautiful and protected landscapes. This study has accumulated a series of information about both organic and plastic mulch materials and its applicability on crop cultivation. Moreover, future research potentials of mulching with modeling were discussed to quantify water loss in agriculture.


Sign in / Sign up

Export Citation Format

Share Document