scholarly journals Female developmental environment delays development of male honeybee (Apis mellifera)

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yi Bo Liu ◽  
Yao Yi ◽  
Amal Abdelmawla ◽  
Yun Lin Zheng ◽  
Zhi Jiang Zeng ◽  
...  

Abstract Background Nutrition and cell size play an important role in the determination of caste differentiation in queen and worker of honeybees (Apis mellifera), whereas the haploid genome dominates the differentiation of drones. However, the effects of female developmental environment on the development of males remain unclear. In this study, young drone larvae were transferred into worker cells (WCs) or remained in drone cells (DCs) to rear drones. The drone larvae were also grafted into queen cells (QCs) for 48 h and then transplanted into drone cells until emerging. Morphological indexes and reproductive organs of these three types of newly emerged drones were measured. Newly emerged drones and third instar drone larvae from WCs, DCs and QCs were sequenced by RNA sequencing (RNA-Seq). Results The amount of food remaining in cells of the QC and WC groups was significantly different to that in the DC group at the early larval stage. Morphological results showed that newly emerged DC drones had bigger body sizes and more well-developed reproductive tissues than WC and QC drones, whereas the reproductive tissues of QC drones were larger than those of WC drones. Additionally, whole body gene expression results showed a clear difference among three groups. At larval stage there were 889, 1761 and 1927 significantly differentially expressed genes (DEGs) in WC/DC, QC/DC and WC/QC comparisons, respectively. The number of DEGs decreased in adult drones of these three comparisons [678 (WC/DC), 338 (QC/DC) and 518 (WC/QC)]. A high number of DEGs were involved in sex differentiation, growth, olfaction, vision, mammalian target of rapamycin (mTOR), Wnt signaling pathways, and other processes. Conclusions This study demonstrated that the developmental environment of honeybee females can delay male development, which may serve as a model for understanding the regulation of sex differentiation and male development in social insects by environmental factors.

2020 ◽  
Author(s):  
Yi Bo Liu ◽  
Yao Yi ◽  
Amal Abdelmawla ◽  
Zhi Jiang Zeng ◽  
Xu Jiang He

Abstract Background Nutrition and cell size play an important role in the determination of caste differentiation in queen-worker of honeybee (Apis mellifera), whereas the haploid genome dominates the differentiation of drones. However, the effects of female developmental environment on the development of males remain unclear. In this study, young drone larvae were transferred into worker cells (WCs) or remained in drone cells (DCs) to rear drones. The parts of drone larvae were also grafted into queen cells (QCs) for 48 h and then transplanted into drone cells until emerging. Morphological indexes and reproductive organs of these three types of newly emerged drones were measured. Newly emerged drones and 3 d drone larvae from WCs, DCs and QCs were sequenced by RNA sequencing (RNA-Seq). Results Morphological results showed that newly emerged DC drones had bigger body sizes and more well-developed reproductive tissues than WC and QC drones, whereas the reproductive tissues of QC drones were relatively better than those of WC drones. Gene expression results showed a more clear difference among three groups. At the larval stage, there were 889, 1761 and 1927 significantly differentially expressed genes (DEGs) in WC/DC, QC/DC and WC/QC comparisons, respectively. The number of DEGs decreased in adult drones of these three comparisons [678 (WC/DC), 338 (QC/DC) and 518 (WC/QC)]. A high number of DEGs were involved in sex regulation, growth, olfaction, vision, mammalian target of rapamycin (mTOR), Wnt signaling pathways, etc. Weighted gene co-expression network analysis (WCGNA) showed that WC and DC larvae were closer than QC larvae, whereas QC and WC drones were closer than DC drones. These results revealed that DC drones had better development in the body and reproductive system than QC and WC drones. Conclusion This study demonstrated that the developmental environment of honeybee females including the larval diet and cell size delayed male development. Naturally, honeybee colony ovigerous workers in queen-less colonies or non-mated queens produce a large number of dysplasia drones which are not well-developed. Therefore, this study serves as a model for understanding the regulation of sexual differentiation in social insects by environmental factors.


2014 ◽  
Vol 104 (9) ◽  
pp. 964-969 ◽  
Author(s):  
Yosuke Matsushita ◽  
Shinya Tsuda

Embryo infection is important for efficient seed transmission of viroids. To identify the major pattern of seed transmission of viroids, we used in situ hybridization to histochemically analyze the distribution of Potato spindle tuber viroid (PSTVd) in each developmental stage of petunia (flowering to mature seed stages). In floral organs, PSTVd was present in the reproductive tissues of infected female × infected male and infected female × healthy male but not of healthy female × infected male before embryogenesis. After pollination, PSTVd was detected in the developed embryo and endosperm in all three crosses. These findings indicate that PSTVd is indirectly delivered to the embryo through ovule or pollen during the development of reproductive tissues before embryogenesis but not directly through maternal tissues as cell-to-cell movement during embryogenesis.


2012 ◽  
Vol 23 (3) ◽  
pp. 282-292 ◽  
Author(s):  
Vivianne Eilers ◽  
Márcia Divina de Oliveira ◽  
Kennedy Francis Roche

AIM: The present study involved an analysis of the monthly variations in the population densities and body sizes of the different stages of planktonic larvae of the invasive golden mussel (Limnoperna fortunei), in the rivers Paraguay and Miranda; METHODS: The study was carried out between February 2004 and January 2005. Monthly collection of the plankton samples was accompanied by physical, chemical and biological analyses of the water; RESULTS: The Miranda River presented higher values of calcium, pH, alkalinity, conductivity and total phosphorous. Larval density varied from 0-24 individuals.L-1 in the Paraguay River, with a peak in March of 2004, while in the Miranda River, densities varied between 0-9 individuals.L-1 with a peak in February of 2004. No larvae were encountered during the coldest months, May and June. No significant correlations were found between environmental variables and larval density in either river. Only the valved larval stages were recorded. The "D" and veliger forms were most abundant; umbonate larvae were rare in the Miranda River samples. Mean body sizes of "D", veliger and umbonate larval stages were, respectively, 111, 135 and 152 µm, in the Paraguay River, and 112, 134 and 154 µm in the Miranda River. Principal Components Analysis indicated positive relationships between "D" larval stage size and the ratio between inorganic and organic suspended solids, while negative relationships were found between larval size and calcium and chlorophyll-<img border=0 width=7 height=8 src="/img/revistas/alb/2012nahead/ALB_AOP_230307car01.jpg">; CONCLUSIONS: The larvae were recorded in the plankton during most of the year, with the exception of the two colder months. Neither densities nor larval stage body sizes were significantly different between the two rivers. Possible positive effects of food and calcium concentrations on body size were not recorded. This species may be adapted to grow in environments with elevated sediment concentrations.


2015 ◽  
Vol 59 (2) ◽  
pp. 127-133 ◽  
Author(s):  
Krystyna Czekońska ◽  
Bożena Chuda-Mickiewicz

Abstract The effectiveness of two methods of collecting semen from honeybee Apis mellifera drones was compared, and the reasons for problems with ejaculating semen were analysed. Among 275 drones, 100 were stimulated to release semen using a manual method, 100 with the use of chloroform, and from 75 drones the reproductive organs were dissected for analysis and evaluation. It was found that the principal causes of problems that drones had with ejaculating their semen were anatomical changes or a delay in the development of the mucus glands. It was also found that the method employing chloroform was less efficient in the first phase of eversion of the endophallus, compared with the manual method. The method with the use of chloroform allows the determination of the proportion of drones, which do not evert the endophallus because of poor or delayed development of mucus glands, as well as the proportion of drones which evert the organ, but do not ejaculate semen because of the absence of semen in the seminal vesicles.


Sociobiology ◽  
2021 ◽  
Vol 68 (1) ◽  
pp. 5935
Author(s):  
Xu Jiang He ◽  
Hao Wei ◽  
Wu Jun Jiang ◽  
Yi Bo Liu ◽  
Xiao Bo Wu ◽  
...  

Queen-worker caste dimorphism is a typical trait for honeybees (Apis mellifera). We previously showed a maternal effect on caste differentiation and queen development, where queens emerged from queen-cell eggs (QE) had higher quality than queens developed from worker cell eggs (WE). In this study, newly-emerged queens were reared from QE, WE, and 2-day worker larvae (2L). The thorax size and DNA methylation levels of queens were measured. We found that queens emerging from QE had significantly larger thorax length and width than WE and 2L. Epigenetic analysis showed that QE/2L comparison had the most different methylated genes (DMGs, 612) followed by WE/2L (473), and QE/WE (371). Interestingly, a great number of DMGs (42) were in genes belonging to mTOR, MAPK, Wnt, Notch, Hedgehog, FoxO, and Hippo signaling pathways that are involved in regulating caste differentiation, reproduction and longevity. This study proved that honeybee maternal effect causes epigenetic alteration regulating caste differentiation and queen development.


1928 ◽  
Vol s2-71 (284) ◽  
pp. 563-651
Author(s):  
GUY D. MORISON

1. The entire musculature of the alimentary canal is described in gross and in histological detail. The development of the muscle is considered. The innervation is described, likewise the tracheation and its relation to muscular activity and the bloodstream. 2. The heart is described with a detailed histological account of its muscle-fibres. Its tracheation is described and its apparent lack of innervation is discussed. 3. The ‘alary’ muscles of the dorsal diaphragm are described with a detailed account of their histology, innervation, and tracheation. 4. The ventral diaphragm is described as well as the histology, innervation, and tracheation of its muscle-fibres. The course of blood and physiological questions connected with it receive discussion. 5. The muscles of the reproductive organs of drone, queen, and worker are described with particular reference to the histology, innervation, tracheation, and physiology of their fibres. 6. The indirect muscles of the wings (fibrous muscle) have their histology, innervation, and tracheation described in detail. The method of contraction of the entire muscles and of the individual fibres and fibrils is discussed. The sarcosomes are described with their physiological significance to contraction. 7. The attachment of all the types of muscle found in the bee is described in histological detail. Different opinions of muscle attachment to chitin are summarized. 8. Throughout the paper, histological measurements are given for the various types of muscle-fibres and their nuclei in the three castes of bee. Since in the three castes the histological appearance is so similar for each type of muscle, the illustrations have been limited to portions of the muscles of worker bees.


2020 ◽  
Vol 21 (8) ◽  
pp. 2718 ◽  
Author(s):  
Yasmine Lund-Ricard ◽  
Patrick Cormier ◽  
Julia Morales ◽  
Agnès Boutet

A major challenge in medical research resides in controlling the molecular processes of tissue regeneration, as organ and structure damage are central to several human diseases. A survey of the literature reveals that mTOR (mechanistic/mammalian target of rapamycin) is involved in a wide range of regeneration mechanisms in the animal kingdom. More particularly, cellular processes such as growth, proliferation, and differentiation are controlled by mTOR. In addition, autophagy, stem cell maintenance or the newly described intermediate quiescence state, Galert, imply upstream monitoring by the mTOR pathway. In this review, we report the role of mTOR signaling in reparative regenerations in different tissues and body parts (e.g., axon, skeletal muscle, liver, epithelia, appendages, kidney, and whole-body), and highlight how the mTOR kinase can be viewed as a therapeutic target to boost organ repair. Studies in this area have focused on modulating the mTOR pathway in various animal models to elucidate its contribution to regeneration. The diversity of metazoan species used to identify the implication of this pathway might then serve applied medicine (in better understanding what is required for efficient treatments in human diseases) but also evolutionary biology. Indeed, species-specific differences in mTOR modulation can contain the keys to appreciate why certain regeneration processes have been lost or conserved in the animal kingdom.


1971 ◽  
Vol 57 (6) ◽  
pp. 377-396 ◽  
Author(s):  
Lorenzo Tomatis ◽  
Vladimir Turusov ◽  
Benedetto Terracini ◽  
Nicholas Day ◽  
William F. Barthel ◽  
...  

The storage levels of DDT and its metabolites, following the long term administration of technical DDT at the dose levels of 2, 20, 50 and 250 ppm to mice, were evaluated in the fat tissue, liver, kidney, brain and reproductive organs. In addition, storage levels were evaluated in foetuses and newborns of DDT-treated mothers. Apart from op'-DDT, there was a direct relationship between the concentration of each metabolite in each organ and the dose to which the animal was exposed. The highest concentration of DDT and metabolites was found in the fat tissue followed by reproductive organs, liver and kidney together, and lastly brain. The most prevalent metabolite was pp'-DDT, except in the liver, where pp'-DDD showed the highest concentration. Pregnant females had lower concentrations of all metabolites than non-pregnant females. The concentration of residues in samples of total foetal litters was directly related to the concentration of DDT fed to the mother. There was a strong negative correlation between the concentration of pp'-DDT and that of pp'-DDD in the foetuses and the placentas of the same litter. A significant increase in whole body DDT concentration was observed shortly after birth.


Sign in / Sign up

Export Citation Format

Share Document