scholarly journals Induction of amylase and protease as antibiofilm agents by starch, casein, and yeast extract in Arthrobacter sp. CW01

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jeffrine Solihin ◽  
Diana Elizabeth Waturangi ◽  
Tresnawati Purwadaria

Abstract Background In unfavourable environment, such as nutrient limitation, some bacteria encased themselves into a three dimensional polymer matrix called biofilm. The majority of microbial infections in human are biofilm related, including chronic lung, wound, and ear infections. The matrix of biofilm which consists of extracellular polymeric substances (EPS) causes bacterial colonization on medical implanted device in patients, such as catheter and lead to patient’s death. Biofilm infections are harder to treat due to increasing antibiotic resistance compared to planktonic microbial cells and escalating the antibiotic concentration may result into in vivo toxicity for the patients. Special compounds which are non-microbicidal that could inhibit or destroy biofilm formation are called antibiofilm compounds, for example enzymes, anti-quorum sensing, and anti-adhesins. Arthrobacter sp. CW01 produced antibiofilm compound known as amylase. This time our preliminary study proved that the antibiofilm compound was not only amylase, but also protease. Therefore, this research aimed to optimize the production of antibiofilm agents using amylase and protease inducing media. The five types of production media used in this research were brain heart infusion (BHI) (Oxoid), BHI with starch (BHIS), casein with starch (CS), yeast extract with starch (YS), and casein-yeast extract with starch (CYS). Biofilm eradication and inhibition activities were assayed against Pseudomonas aeruginosa (ATCC 27,853) and Staphylococcus aureus (ATCC 25,923). Results The results showed that different production media influenced the antibiofilm activity. Addition of starch, casein and yeast extract increased the production of amylase and protease significantly. Higher amylase activity would gradually increase the antibiofilm activity until it reached the certain optimum point. It was shown that crude extracts which contained amylase only (BHI, BHIS and YS) had the optimum eradication activity against P. aeruginosa and S. aureus biofilm around 60–70 %. Meanwhile, CS and CYS crude extracts which contained both amylase and protease increased the biofilm eradication activity against both pathogens, which were around 70–90 %. Conclusions It was concluded that the combination of amylase and protease was more effective as antibiofilm agents against P. aeruginosa and S. aureus rather than amylase only.

2016 ◽  
Vol 2 (3) ◽  
pp. e1501462 ◽  
Author(s):  
Cameron A. McConkey ◽  
Elizabeth Delorme-Axford ◽  
Cheryl A. Nickerson ◽  
Kwang Sik Kim ◽  
Yoel Sadovsky ◽  
...  

In eutherians, the placenta acts as a barrier and conduit at the maternal-fetal interface. Syncytiotrophoblasts, the multinucleated cells that cover the placental villous tree surfaces of the human placenta, are directly bathed in maternal blood and are formed by the fusion of progenitor cytotrophoblasts that underlie them. Despite their crucial role in fetal protection, many of the events that govern trophoblast fusion and protection from microbial infection are unknown. We describe a three-dimensional (3D)–based culture model using human JEG-3 trophoblast cells that develop syncytiotrophoblast phenotypes when cocultured with human microvascular endothelial cells. JEG-3 cells cultured in this system exhibit enhanced fusogenic activity and morphological and secretory activities strikingly similar to those of primary human syncytiotrophoblasts. RNASeq analyses extend the observed functional similarities to the transcriptome, where we observed significant overlap between syncytiotrophoblast-specific genes and 3D JEG-3 cultures. Furthermore, JEG-3 cells cultured in 3D are resistant to infection by viruses and Toxoplasma gondii, which mimics the high resistance of syncytiotrophoblasts to microbial infections in vivo. Given that this system is genetically manipulatable, it provides a new platform to dissect the mechanisms involved in syncytiotrophoblast development and microbial resistance.


2020 ◽  
Vol 27 (2) ◽  
Author(s):  
Putri Lestari Anggiarini ◽  
◽  
Meiny F Amin ◽  
Juanita A Gunawan ◽  
Armelia Sari Widyarman ◽  
...  

Sodium hypochlorite is a commonly used irrigation solution in endodontic procedures, but it irritates tissues and has toxic effects. Lentinus edodes is a mushroom that has antibacterial properties. Enterococcus faecalis is an anaerobic bacterium that can cause root canal treatment failure. Objective: This study aimed to determine the effect of L. edodes extract on the eradication of E. faecalis biofilms. Methods: Phytochemical tests of L. edodes were performed to analyze alkaloids, steroids, triterpenoids, phenolics, tannins, flavonoids, and glycosides from this extract qualitatively. E. faecalis ATCC 29212 was cultured in brain heart infusion broth for 24 h at 37°C in an anaerobic atmosphere. Biofilm assay was performed to analyze the eradication of E. faecalis biofilm after treatment with L. edodes extract. The application times were 5, 15, and 30, and 10%, 20%, 40%, and 80% concentrations were used. Distilled water was used as a negative control, and NaOCl was used as a positive control. Data were statistically analyzed via one-way analysis of variance, where p < 0.05 was set as the level of significance. Results: L. edodes mushroom extract was effective in eradicating E. faecalis biofilms in all concentrations and incubation times compared with the control (p < 0.05). Significant differences were found between the application times of 5 and 15 min compared with 30 min (p < 0.05). The most effective concentration in eradicating E faecalis biofilms was 40% with an application time of 30 min. Conclusion: L. edodes mushroom extract proves its antibiofilm activity against E. faecalis biofilm. Further study is necessary to determine which substances are have the most influence on the effectiveness of L. edodes extract in eradicating E. faecalis biofilm in vivo.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Arnaud Heumann ◽  
Ali Assifaoui ◽  
David Da Silva Barreira ◽  
Charles Thomas ◽  
Romain Briandet ◽  
...  

Abstract In this study, we show that calcium pectinate beads (CPB) allow the formation of 20 µm spherical microcolonies of the probiotic bacteria Lacticaseibacillus paracasei (formerly designated as Lactobacillus paracasei) ATCC334 with a high cell density, reaching more than 10 log (CFU/g). The bacteria within these microcolonies are well structured and adhere to a three-dimensional network made of calcium-pectinate through the synthesis of extracellular polymeric substances (EPS) and thus display a biofilm-like phenotype, an attractive property for their use as probiotics. During bacterial development in the CPB, a coalescence phenomenon arises between neighboring microcolonies accompanied by their peripheral spatialization within the bead. Moreover, the cells of L. paracasei ATCC334 encased in these pectinate beads exhibit increased resistance to acidic stress (pH 1.5), osmotic stress (4.5 M NaCl), the freeze-drying process and combined stresses, simulating the harsh conditions encountered in the gastrointestinal (GI) tract. In vivo, the oral administration of CPB-formulated L. paracasei ATCC334 in mice demonstrated that biofilm-like microcolonies are successfully released from the CPB matrix in the colonic environment. In addition, these CPB-formulated probiotic bacteria display the ability to reduce the severity of a DSS-induced colitis mouse model, with a decrease in colonic mucosal injuries, less inflammation, and reduced weight loss compared to DSS control mice. To conclude, this work paves the way for a new form of probiotic administration in the form of biofilm-like microcolonies with enhanced functionalities.


Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


Author(s):  
Greg V. Martin ◽  
Ann L. Hubbard

The microtubule (MT) cytoskeleton is necessary for many of the polarized functions of hepatocytes. Among the functions dependent on the MT-based cytoskeleton are polarized secretion of proteins, delivery of endocytosed material to lysosomes, and transcytosis of integral plasma membrane (PM) proteins. Although microtubules have been shown to be crucial to the establishment and maintenance of functional and structural polarization in the hepatocyte, little is known about the architecture of the hepatocyte MT cytoskeleton in vivo, particularly with regard to its relationship to PM domains and membranous organelles. Using an in situ extraction technique that preserves both microtubules and cellular membranes, we have developed a protocol for immunofluorescent co-localization of cytoskeletal elements and integral membrane proteins within 20 µm cryosections of fixed rat liver. Computer-aided 3D reconstruction of multi-spectral confocal microscope images was used to visualize the spatial relationships among the MT cytoskeleton, PM domains and intracellular organelles.


2009 ◽  
Vol 30 (05) ◽  
pp. 432-438 ◽  
Author(s):  
Akira Goto ◽  
Hisao Moritomo ◽  
Tomonobu Itohara ◽  
Tetsu Watanabe ◽  
Kazuomi Sugamoto

2018 ◽  
Vol 18 (4) ◽  
pp. 246-255 ◽  
Author(s):  
Lara Termini ◽  
Enrique Boccardo

In vitro culture of primary or established cell lines is one of the leading techniques in many areas of basic biological research. The use of pure or highly enriched cultures of specific cell types obtained from different tissues and genetics backgrounds has greatly contributed to our current understanding of normal and pathological cellular processes. Cells in culture are easily propagated generating an almost endless source of material for experimentation. Besides, they can be manipulated to achieve gene silencing, gene overexpression and genome editing turning possible the dissection of specific gene functions and signaling pathways. However, monolayer and suspension cultures of cells do not reproduce the cell type diversity, cell-cell contacts, cell-matrix interactions and differentiation pathways typical of the three-dimensional environment of tissues and organs from where they were originated. Therefore, different experimental animal models have been developed and applied to address these and other complex issues in vivo. However, these systems are costly and time consuming. Most importantly the use of animals in scientific research poses moral and ethical concerns facing a steadily increasing opposition from different sectors of the society. Therefore, there is an urgent need for the development of alternative in vitro experimental models that accurately reproduce the events observed in vivo to reduce the use of animals. Organotypic cultures combine the flexibility of traditional culture systems with the possibility of culturing different cell types in a 3D environment that reproduces both the structure and the physiology of the parental organ. Here we present a summarized description of the use of epithelial organotypic for the study of skin physiology, human papillomavirus biology and associated tumorigenesis.


2020 ◽  
Vol 10 (2) ◽  
pp. 133-148
Author(s):  
Ankaj Kaundal ◽  
Pravin Kumar ◽  
Rajendra Awasthi ◽  
Giriraj T. Kulkarni

Aim: The study was aimed to develop mucoadhesive buccal tablets using Aster ericoides leaves mucilage. Background : Mucilages are naturally occurring high-molecular-weight polyuronides, which have been extensively studied for their application in different pharmaceutical dosage forms. Objective: The objective of the present research was to establish the mucilage isolated from the leaves of Aster ericoides as an excipient for the formulation of the mucoadhesive buccal tablet. Method: The mucilage was isolated from the leaves of Aster ericoides by maceration, precipitated with acetone and characterized. Tablets were prepared using wet granulation technique and evaluated for various official tests. Results: The mucilage was found to be non-toxic on A-431 and Vero cell lines. It was insoluble but swellable in cold and hot water. The results indicate that mucilage can form a three-dimensional network. The pH of the mucilage (6.82 ± 0.13) indicated that it might be non-irritant to the buccal cavity. The mucilage was found to be free from microbes. The release of drug was by Fickian diffusion. The in vivo buccal tablet acceptance was 80%. No significant difference between the diastolic blood pressure of standard and Aster tablets treated volunteer group was recorded. Conclusion: The mucilage was found to be non-toxic on A-431 and Vero cell lines. It was insoluble but swellable in cold and hot water. The results indicate that mucilage can form a three-dimensional network. The pH of the mucilage (6.82 ± 0.13) indicated that it might be non-irritant to the buccal cavity. The mucilage was found to be free from microbes. The release of drug was by Fickian diffusion. The in vivo buccal tablet acceptance was 80%. No significant difference between the diastolic blood pressure of standard and Aster tablets treated volunteer group was recorded. Other: However, to prove the potency of the polymer, in vivo bioavailability studies in human volunteers are needed along with chronic toxicity studies in suitable animal models.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiang Lan Fan ◽  
Jose A. Rivera ◽  
Wei Sun ◽  
John Peterson ◽  
Henry Haeberle ◽  
...  

AbstractUnderstanding the structure and function of vasculature in the brain requires us to monitor distributed hemodynamics at high spatial and temporal resolution in three-dimensional (3D) volumes in vivo. Currently, a volumetric vasculature imaging method with sub-capillary spatial resolution and blood flow-resolving speed is lacking. Here, using two-photon laser scanning microscopy (TPLSM) with an axially extended Bessel focus, we capture volumetric hemodynamics in the awake mouse brain at a spatiotemporal resolution sufficient for measuring capillary size and blood flow. With Bessel TPLSM, the fluorescence signal of a vessel becomes proportional to its size, which enables convenient intensity-based analysis of vessel dilation and constriction dynamics in large volumes. We observe entrainment of vasodilation and vasoconstriction with pupil diameter and measure 3D blood flow at 99 volumes/second. Demonstrating high-throughput monitoring of hemodynamics in the awake brain, we expect Bessel TPLSM to make broad impacts on neurovasculature research.


Sign in / Sign up

Export Citation Format

Share Document