scholarly journals TNF-α - mediated peripheral and central inflammation are associated with increased incidence of PND in acute postoperative pain

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yu-fan Zhao ◽  
Hui-wen Yang ◽  
Ting-shun Yang ◽  
Wenxiu Xie ◽  
Zhong-hua Hu

Abstract Background Acute postoperative pain plays an important role in the perioperative neurocognitive disorders (PND). The pathogenesis of PND is still unknown, but it is generally believed that peripheral and central nervous system inflammation play an important role, and acute postoperative pain is also thought to aggravate postoperative inflammatory response. The aim of the present study is to explore the effect of acute postoperative pain on peripheral and central nervous system inflammation and related cognitive impairment behaviour in elderly rats after surgery. Methods Rats were assigned into four groups: control, surgery for internal fixation for tibial fracture, surgery with analgesia using intraperitoneal morphine, and morphine without surgery. Pain was assessed by the Subjective Pain Scale. The spatial memory of rats was assessed by the Morris water maze (delayed matching task) from the second day to the seventh day after surgery (POD2-POD7). In part of the rats, the pro-inflammatory cytokines TNF-α in plasma, the medial prefrontal cortex (mPFC), and the hippocampus were determined by ELISA on the POD2. The activation of microglia and the expression of c-Fos in the hippocampal CA1 regions and mPFC were detected by the immunohistochemical method on the POD2. Results Acute postoperative pain and spatial memory impairment occurred after operation, and postoperative analgesia could significantly improve the both parameters. Additionally, on the POD2, the levels of TNF-α in plasma, hippocampus and mPFC were significantly increased, while the activation of microglia cells and the expression c-Fos in the hippocampal CA1 regions and mPFC were significantly increased. And postoperative analgesia with morphine significantly inhibited the above reactions. Conclusion Our data suggest that acute postoperative pain increases the incidence of perioperative neurocognitive disorders. Peripheral and central nervous system inflammation may be involved in this cognitive impairment. And reducing the intensity of acute postoperative pain may be one of the main preventive strategies for PND.

2019 ◽  
Vol 19 (8) ◽  
pp. 597-604
Author(s):  
Li Pang ◽  
Shouqin Ji ◽  
Jihong Xing

Background: Central pro-inflammatory cytokine (PIC) signal is involved in neurological deficits after transient global ischemia induced by cardiac arrest (CA). The present study was to examine if blocking acid sensing ion channels (ASICs) using amiloride in the Central Nervous System can alleviate neurological deficits after the induction of CA and further examine the participation of PIC signal in the hippocampus for the effects of amiloride. Methods: CA was induced by asphyxia and then cardiopulmonary resuscitation was performed in rats. Western blot analysis and ELISA were used to determine the protein expression of ASIC subunit ASIC1 in the hippocampus, and the levels of PICs. As noted, it is unlikely that this procedure is clinically used although amiloride and other pharmacological agents were given into the brain in this study. Results: CA increased ASIC1 in the hippocampus of rats in comparison with control animals. This was associated with the increase in IL-1β, IL-6 and TNF-α together with Caspase-3 and Caspase-9. The administration of amiloride into the lateral ventricle attenuated the upregulation of Caspase-3/Caspase-9 and this further alleviated neurological severity score and brain edema. Inhibition of central IL-6 and TNF-α also decreased ASIC1 in the hippocampus of CA rats. Conclusion: Transient global ischemia induced by CA amplifies ASIC1a in the hippocampus likely via PIC signal. Amiloride administered into the Central Nervous System plays a neuroprotective role in the process of global ischemia. Thus, targeting ASICs (i.e., ASIC1a) is suggested for the treatment and improvement of CA-evoked global cerebral ischemia.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Max Borsche ◽  
Dirk Reichel ◽  
Anja Fellbrich ◽  
Anne S. Lixenfeld ◽  
Johann Rahmöller ◽  
...  

AbstractNeurological long-term sequelae are increasingly considered an important challenge in the recent COVID-19 pandemic. However, most evidence for neurological symptoms after SARS-CoV-2 infection and central nervous system invasion of the virus stems from individuals severely affected in the acute phase of the disease. Here, we report long-lasting cognitive impairment along with persistent cerebrospinal fluid anti-SARS-CoV-2 antibodies in a female patient with unremarkable standard examination 6 months after mild COVID-19, supporting the implementation of neuropsychological testing and specific cerebrospinal fluid investigation also in patients with a relatively mild acute disease phase.


Author(s):  
I B Meier ◽  
C Vieira Ligo Teixeira ◽  
I Tarnanas ◽  
F Mirza ◽  
L Rajendran

Abstract Recent case studies show that the SARS-CoV-2 infectious disease, COVID-19, is associated with accelerated decline of mental health, in particular, cognition in elderly individuals, but also with neurological and neuropsychiatric illness in young people. Recent studies also show a bidirectional link between COVID-19 and mental health in that people with previous history of psychiatric illness have a higher risk for contracting COVID-19 and that COVID-19 patients display a variety of psychiatric illnesses. Risk factors and the response of the central nervous system to the virus show large overlaps with pathophysiological processes associated with Alzheimer’s disease, delirium, post-operative cognitive dysfunction and acute disseminated encephalomyelitis, all characterized by cognitive impairment. These similarities lead to the hypothesis that the neurological symptoms could arise from neuroinflammation and immune cell dysfunction both in the periphery as well as in the central nervous system and the assumption that long-term consequences of COVID-19 may lead to cognitive impairment in the well-being of the patient and thus in today’s workforce, resulting in large loss of productivity. Therefore, particular attention should be paid to neurological protection during treatment and recovery of COVID-19, while cognitive consequences may require monitoring.


Author(s):  
Oren Levy ◽  
Veit Rothhammer ◽  
Ivan Mascanfroni ◽  
Zhixiang Tong ◽  
Rui Kuai ◽  
...  

2016 ◽  
Vol 38 (3) ◽  
pp. 859-870 ◽  
Author(s):  
Mingfeng He ◽  
Hongquan Dong ◽  
Yahui Huang ◽  
Shunmei Lu ◽  
Shu Zhang ◽  
...  

Background/Aims: Microglia are an essential player in central nervous system inflammation. Recent studies have demonstrated that the astrocytic chemokine, CCL2, is associated with microglial activation in vivo. However, CCL2-induced microglial activation has not yet been studied in vitro. The purpose of the current study was to understand the role of astrocyte-derived CCL2 in microglial activation and to elucidate the underlying mechanism(s). Methods: Primary astrocytes were pre-treated with CCL2 siRNA and stimulated with TNF-α. The culture medium (CM) was collected and added to cultures of microglia, which were incubated with and without CCR2 inhibitor. Microglial cells were analyzed by quantitative RT-PCR to determine whether they polarized to the M1 or M2 state. Microglial migratory ability was assessed by transwell migration assay. Results: TNF-α stimulated the release of CCL2 from astrocytes, even if the culture media containing TNF-α was replaced with fresh media after 3 h. CM from TNF-α-stimulated astrocytes successfully induced microglial activation, which was ascertained by increased activation of M1 and enhanced migration ability. In contrast, CM from astrocytes pretreated with CCL2 siRNA showed no effect on microglial activation, compared to controls. Additionally, microglia pre-treated with RS102895, a CCR2 inhibitor, were resistant to activation by CM from TNF-α-stimulated astrocytes. Conclusion: This study demonstrates that the CCL2/CCR2 pathway of astrocyte-induced microglial activation is associated with M1 polarization and enhanced migration ability, indicating that this pathway could be a useful target to ameliorate inflammation in the central nervous system.


2003 ◽  
Vol 284 (2) ◽  
pp. R328-R335 ◽  
Author(s):  
Joseph Francis ◽  
Robert M. Weiss ◽  
Alan Kim Johnson ◽  
Robert B. Felder

The Randomized Aldactone Evaluation Study (RALES) demonstrated a substantial clinical benefit to blocking the effects of aldosterone (Aldo) in patients with heart failure. We recently demonstrated that the enhanced renal conservation of sodium and water in rats with heart failure can be reduced by blocking the central nervous system effects of Aldo with the mineralocorticoid receptor (MR) antagonist spironolactone (SL). Preliminary data from our laboratory suggested that central MR might contribute to another peripheral mechanism in heart failure, the release of proinflammatory cytokines. In the present study, SL (100 ng/h for 21 days) or ethanol vehicle (Veh) was administered via the 3rd cerebral ventricle to one group of rats after coronary ligation (CL) or sham CL (Sham) to induce congestive heart failure (CHF). In Veh-treated CHF rats, tumor necrosis factor-α (TNF-α) levels increased during day 1 and continued to increase throughout the 3-wk observation period. In CHF rats treated with SL, started 24 h after CL, TNF-α levels rose initially but retuned to control levels by day 5 after CL and remained low throughout the study. These findings suggest that activation of MR in the central nervous system plays a critical role in regulating TNF-α release in heart failure rats. Thus some of the beneficial effect of blocking MR in heart failure could be due at least in part to a reduction in TNF-α production.


Sign in / Sign up

Export Citation Format

Share Document