scholarly journals PTEN loss correlates with T cell exclusion across human cancers

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ziying Lin ◽  
Lixia Huang ◽  
Shao Li Li ◽  
Jincui Gu ◽  
Xiaoxian Cui ◽  
...  

Abstract Background Recent evidences had shown that loss in phosphatase and tensin homolog deleted on chromosome 10 (PTEN) was associated with immunotherapy resistance, which may be attributed to the non-T-cell-inflamed tumor microenvironment. The impact of PTEN loss on tumor microenvironment, especially regarding T cell infiltration across tumor types is not well understood. Methods Utilizing The Cancer Genome Atlas (TCGA) and publicly available dataset of immunotherapy, we explored the correlation of PTEN expressing level or genomic loss with tumor immune microenvironment and response to immunotherapy. We further investigated the involvement of PI3K-AKT-mTOR pathway activation, which is known to be the subsequent effect of PTEN loss, in the immune microenvironment modulation. Results We reveal that PTEN mRNA expression is significantly positively correlated with CD4/CD8A gene expression and T cells infiltration especially T helpers cells, central memory T cell and effector memory T cells in multiples tumor types. Genomic loss of PTEN is associated with reduced CD8+ T cells, type 1 T helper cells, and increased type 2 T helper cells, immunosuppressed genes (e.g. VEGFA) expression. Furthermore, T cell exclusive phenotype is also observed in tumor with PI3K pathway activation or genomic gain in PIK3CA or PIK3CB. PTEN loss and PI3K pathway activation correlate with immunosuppressive microenvironment, especially in terms of T cell exclusion. PTEN loss predict poor therapeutic response and worse survival outcome in patients receiving immunotherapy. Conclusion These data brings insight into the role of PTEN loss in T cell exclusion and immunotherapy resistance, and inspires further research on immune modulating strategy to augment immunotherapy.

2021 ◽  
Author(s):  
Ziying Lin ◽  
Lixia Huang ◽  
ShaoLi Li ◽  
Jincui Gu ◽  
Xiaoxian Cui ◽  
...  

Abstract Background: Recent evidences had shown that loss in phosphatase and tensin homolog deleted on chromosome 10 (PTEN) was associated with immunotherapy resistance, which may be attributed to the non-T-cell-inflamed tumor microenvironment. The impact of PTEN loss on tumor microenvironment, especially regarding T cell infiltration across tumor types is not well understood.Methods: Utilizing The Cancer Genome Atlas (TCGA) and publicly available dataset of immunotherapy, we explored the correlation of PTEN expressing level or genomic loss with tumor immune microenvironment and response to immunotherapy. We further investigated the involvement of PI3K-AKT-mTOR pathway activation, which is known to be the subsequent effect of PTEN loss, in the immune microenvironment modulation.Results: We reveal that PTEN mRNA expression is significantly positively correlated with CD4/CD8A gene expression and T cells infiltration especially T helpers cells, central memory T cell and effector memory T cells in multiples tumor types. Genomic loss of PTEN is associated with reduced CD8+ T cells, type 1 T helper cells, and increased type 2 T helper cells, immunosuppressed genes (e.g. VEGFA) expression. Furthermore, T cell exclusive phenotype is also observed in tumor with PI3K pathway activation or genomic gain in PIK3CA or PIK3CB. PTEN loss and PI3K pathway activation correlate with immunosuppressive microenvironment, especially in terms of T cell exclusion. PTEN loss predict poor therapeutic response and worse survival outcome in patients receiving immunotherapy.Conclusion: These data brings insight into the role of PTEN loss in T cell exclusion and immunotherapy resistance, and inspires further research on immune modulating strategy to augment immunotherapy.


Author(s):  
Margherita Amadi ◽  
Silvia Visentin ◽  
Francesca Tosato ◽  
Paola Fogar ◽  
Giulia Giacomini ◽  
...  

Abstract Objectives Preterm premature rupture of membranes (pPROM) causes preterm delivery, and increases maternal T-cell response against the fetus. Fetal inflammatory response prompts maturation of the newborn’s immunocompetent cells, and could be associated with unfavorable neonatal outcome. The aims were to examine the effects of pPROM (Mercer BM. Preterm premature rupture of the membranes: current approaches to evaluation and management. Obstet Gynecol Clin N Am 2005;32:411) on the newborn’s and mother’s immune system and (Test G, Levy A, Wiznitzer A, Mazor M, Holcberg G, Zlotnik A, et al. Factors affecting the latency period in patients with preterm premature rupture of membranes (pPROM). Arch Gynecol Obstet 2011;283:707–10) to assess the predictive value of immune system changes in neonatal morbidity. Methods Mother-newborn pairs (18 mothers and 23 newborns) who experienced pPROM and controls (11 mothers and 14 newborns), were enrolled. Maternal and neonatal whole blood samples underwent flow cytometry to measure lymphocyte subpopulations. Results pPROM-newborns had fewer naïve CD4 T-cells, and more memory CD4 T-cells than control newborns. The effect was the same for increasing pPROM latency times before delivery. Gestational age and birth weight influenced maturation of the newborns’ lymphocyte subpopulations and white blood cells, notably cytotoxic T-cells, regulatory T-cells, T-helper cells (absolute count), and CD4/CD8 ratio. Among morbidities, fewer naïve CD8 T-cells were found in bronchopulmonary dysplasia (BPD) (p=0.0009), and more T-helper cells in early onset sepsis (p=0.04). Conclusions pPROM prompts maturation of the newborn’s T-cell immune system secondary to antigenic stimulation, which correlates with pPROM latency. Maternal immunity to inflammatory conditions is associated with a decrease in non-major histocompatibility complex (MHC)-restricted cytotoxic cells.


Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Nathan Campbell ◽  
Evangeline M Deer ◽  
Lorena M Amaral ◽  
Kristen Reeve ◽  
Sarah Fitzgerald ◽  
...  

Preeclampsia (PE), new onset hypertension during pregnancy, is the leading cause of death and morbidity world-wide for the mother and fetus during pregnancy. The Reduced Uterine Perfusion Pressure Rat Model of PE (RUPP) exhibits many characteristics of PE including hypertension, suppressed regulatory T cells (T RegS ) associated with increased CD4+ T cells and B cells secreting agonistic autoantibodies to the AngII receptor (AT1-AA). We have previously shown that blockade of T-helper cells improves blood pressure and lowers AT1-AA secretion. A potential mechanism for the decreased blood pressure is decreased cytolytic natural killer (cNK) cells. Abatacept (Aba) is a fusion molecule designed to inhibit T cell co-stimulation in response to antigens and is used to treat autoimmune diseases. We hypothesize that treatment with Aba will prevent the activation of T-helper cells and therefore lower AT1-AA as a mechanism leading to less cNK cells in response to placental ischemia in RUPP rats. Aba was given on day 13 via the jugular vein. On day 19, blood and tissues were collected, blood pressure (MAP), pup weight, and NK cells were measured by flow cytometry in the blood and placenta. A one-way ANOVA was used for statistical analysis. On GD19, MAP significantly increased in RUPP 119±2 mmHg (n=7, p<0.05) compared to NP controls 102±2 mmHg (n=7) and was normalized with Aba (100±2 mmHg (n=10, p<0.05). Compared to the NP controls (2.2±0.06, n=7), pup weight significantly decreased in RUPP (2±0.08, n=7, p<0.05) but was 2± 0.07, with Aba (n=10). Circulating and placental total NK cells were 32±5, 44±13, % gate in NP rats (n=7), 59±4, 60±16 % gate in RUPP rats (n=7, p<0.05; n=4), which significantly decreased to 40±6, 28±8 % gate with Aba (n=10, p<0.05; n=11). Our findings indicate that prevention of T cell activation lowers total NK cell number and blood pressure in response to placental ischemia of pregnancy.


2021 ◽  
Vol 6 (55) ◽  
pp. eabb6852
Author(s):  
Young Min Son ◽  
In Su Cheon ◽  
Yue Wu ◽  
Chaofan Li ◽  
Zheng Wang ◽  
...  

Much remains unknown about the roles of CD4+ T helper cells in shaping localized memory B cell and CD8+ T cell immunity in the mucosal tissues. Here, we report that lung T helper cells provide local assistance for the optimal development of tissue-resident memory B and CD8+ T cells after the resolution of primary influenza virus infection. We have identified a population of T cells in the lung that exhibit characteristics of both follicular T helper and TRM cells, and we have termed these cells as resident helper T (TRH) cells. Optimal TRH cell formation was dependent on transcription factors involved in T follicular helper and resident memory T cell development including BCL6 and Bhlhe40. We show that TRH cells deliver local help to CD8+ T cells through IL-21–dependent mechanisms. Our data have uncovered the presence of a tissue-resident helper T cell population in the lung that plays a critical role in promoting the development of protective B cell and CD8+ T cell responses.


Author(s):  
Young Min Son ◽  
In Su Cheon ◽  
Yue Wu ◽  
Chaofan Li ◽  
Zheng Wang ◽  
...  

AbstractThe roles of CD4+ T helper cells (TH) in shaping localized memory B and CD8+ T cell immunity in the mucosal tissues are largely unexplored. Here, we report that lung TH cells provide local assistance for the optimal development of tissue-resident memory B (BRM) and CD8+ T (TRM) cells following the resolution of primary influenza virus infection. We identify a population of tissue-resident CD4+ TH (aka TRH) cells that co-exhibit follicular T helper (TFH) and TRM cell features and mediate local help of CD4+ T cells to B and CD8+ T cells. Optimal TRH cell formation requires lung B cells and transcription factors involved in TFH or TRM development. Further, we show that TRH cells deliver local help to B and CD8 T cells through CD40L and IL-21-dependent mechanisms. Our data have uncovered a new tissue-resident TH cell population that is specialized in assisting the development of mucosal protective B and CD8+ T cell responses in situ.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3318-3318
Author(s):  
Kanak Joshi ◽  
Ryan Mack ◽  
Lei Zhang ◽  
Shanhui Liu ◽  
Mark Sellin ◽  
...  

Abstract Inactive mutations of the Ten-eleven translocation (TET2) gene are commonly found in humans with multiple hematological malignancies including myeloproliferative neoplasm (MPN), acute myeloid leukemia, diffuse large B cell lymphoma, and peripheral T cell lymphomas (PTCL), and are frequently associated with poor prognosis and worse overall survival. TET2 mutations often occur in hematopoietic stem and progenitor cells (HSPCs) and are known to collaborate with additional mutations for full-blown malignant transformation. However, the molecular mechanism by which the disease identity is determined remains to be elucidated. Increased inflammatory cytokines are commonly detected in patients with TET2 mutations, which is associated with an increased risk of atherosclerotic cardiovascular diseases. Most Tet2 knockout (Tet2 -/-) mice develop MPN-like disease within 18 months, with only a few cases developing chronic lymphocyte leukemia-like disease at two years of age. The intestinal bacteria-induced inflammatory signaling plays a critical role in the pathogenesis of MPN-like disease in Tet2 -/- mice. Receptor-interacting protein kinase 3 (Ripk3) is a key mediator of inflammation cytokine-induced necroptosis and metabolic signaling. Compared to bone marrow (BM) cells isolated from wild-type mice, higher levels of Ripk3 activity can be detected in Tet2 -/- BM cells. To study the role of Ripk3 in Tet2 mutations associated with hematopoietic diseases, we crossed Tet2 conditional knockout (Tet2fx/fx Mx1-Cre +) mice with Ripk3 -/- mice to generate Tet2 and Ripk3 compound knockout (Tet2 -/-Ripk3 -/-) mice. Tet2 -/-Ripk3 -/- mice developed aggressive tumors by 12-15 months of age as characterized by profound hepatosplenomegaly and lymphadenopathy, with substantial lymphocytosis, neutrophilia, anemia, and thrombocytopenia. Histopathological analysis revealed an aggressive infiltration of tumor cells in the liver and spleen, and effacement of splenic follicular structures in diseased Tet2 -/-Ripk3 -/- mice. To characterize the type of malignancies, single-cell suspensions of the BM, peripheral blood (PB), and spleen from Tet2 -/-Ripk3 -/- were analyzed by flow cytometry and compared with wild-type and Tet2 -/- mice. As expected Tet2 -/- mice exhibited increased frequencies of myeloid cells in the PB, BM, and spleen. However, there was a marked expansion of CD4 + T cells in the PB, BM, and spleen of Tet2 -/-Ripk3 -/- mice. Detailed analyses of the T subsets demonstrated a marked expansion of both CD4 +PD1 +CXCR5 + follicular T helper cells (T fh) and CD4 +PD1 + peripheral T helper cells (T ph), indicating the development of a peripheral T cell lymphoma (PTCL) in the Tet2 -/-Ripk3 -/- mice. Additionally, disease characteristics including the reduced surface expression of CD3 in the tumor cells, increased levels of classical T h cytokines in the serum, as well as the presence of heterogeneous populations of cells within the tumor tissues recapitulate the pathological features of angioimmunoblastic T cell lymphoma (AITL), a subtype of PTCL. Elevated frequencies of splenic T fh and T ph cells were detected as early as 7 months of age in Tet2 -/-Ripk3 -/- mice. Such cells expressed inducible T cell costimulatory receptor (ICOS), an essential signaling mediator of the T fh development and proliferation. However, all other hematopoietic parameters including BM HSPCs and mature CD4 + T cells were comparable to wild type and single-gene Tet2 -/- mice. These results indicate that Ripk3 signaling inhibits PTCL development in Tet2 -/- mice by limiting the expansion of T fh and T ph cells. We are currently determining whether Ripk3 plays such a role by inducing necroptosis and/or restricting the differentiation of CD4 + naive T cells into peripheral T fh and T ph populations. We are also investigating whether Ripk3 signaling is inactivated in the tumor cells of human PTCL patients and whether we can treat such aggressive fatal diseases by reactivating Ripk3 signaling. Disclosures No relevant conflicts of interest to declare.


1985 ◽  
Vol 162 (1) ◽  
pp. 117-127 ◽  
Author(s):  
W A Jefferies ◽  
J R Green ◽  
A F Williams

The rat W3/25 antigen that appears to be equivalent to human CD4 (T4) antigen is expressed on thymocytes and T helper cells and plays a role in the response of T helper cells to antigen. The W3/25 and anti-T4 antibodies also label macrophages. In this paper we examine whether the macrophage antigen is the same as that on T cells. New monoclonal antibodies against the rat CD4 antigen, MRC OX-35 through OX-38, are described, all of which label peritoneal macrophages from normal and athymic rats. The molecular weight of W3/25 antigen on macrophages is indistinguishable from that on T cells. We conclude that macrophages express authentic CD4 (W3/25) antigen. Another new monoclonal antibody, MRC OX-34, labels an antigen of 50-54,000 mol wt that is expressed on rat T but not B cells or peritoneal macrophages. It was used to control for the presence of any T cell products in immunoprecipitation from rat macrophage extracts.


1998 ◽  
Vol 72 (6) ◽  
pp. 4866-4873 ◽  
Author(s):  
Bertram T. Ober ◽  
Artur Summerfield ◽  
Christina Mattlinger ◽  
Karl-Heinz Wiesmüller ◽  
Günther Jung ◽  
...  

ABSTRACT Pseudorabies virus (PRV; suid herpesvirus 1) infection causes heavy economic losses in the pig industry. Therefore, vaccination with live attenuated viruses is practiced in many countries. This vaccination was demonstrated to induce extrathymic virus-specific memory CD4+CD8+ T lymphocytes. Due to their major histocompatibility complex (MHC) class II-restricted proliferation, it is generally believed that these T lymphocytes function as memory T-helper cells. To directly prove this hypothesis, 15-amino-acid, overlapping peptides of the viral glycoprotein gC were used for screening in proliferation assays with peripheral blood mononuclear cells of vaccinated d/d haplotype inbred pigs. In these experiments, two naturally processed T-cell epitopes (T1 and T2) which are MHC class II restricted were identified. It was shown that extrathymic CD4+CD8+ T cells are the T-lymphocyte subpopulation that responds to epitope T2. In addition, we were able to show that cytokine secretion can be induced in these T cells through recall with inactivated PRV and demonstrated that activated PRV-primed CD4+CD8+ T cells are able to induce PRV-specific immunoglobulin synthesis by PRV-primed, resting B cells. Taken together, these results demonstrate that the glycoprotein gC takes part in the priming of humoral anti-PRV memory responses. The experiments identified the first T-cell epitopes so far known to induce the generation of virus-specific CD4+CD8+ memory T lymphocytes and showed that CD4+CD8+ T cells are memory T-helper cells. Therefore, this study describes the generation of virus-specific CD4+CD8+ T cells, which is observed during vaccination, as a part of the potent humoral anti-PRV memory response induced by the vaccine.


2009 ◽  
Vol 16 (2) ◽  
pp. 218-227 ◽  
Author(s):  
M. Chiarini ◽  
A. Sottini ◽  
C. Ghidini ◽  
C. Zanotti ◽  
F. Serana ◽  
...  

The immunomodulating activity of glatiramer acetate on T-cells of multiple sclerosis patients has only been partially clarified. The objective of this work was to investigate whether glatiramer acetate modifies thymic release of newly produced T-cells and the peripheral composition of the T-cell repertoire. T-cell receptor excision circles, thymic naive (CD4+CD45RA+CCR7 +CD31+) T helper cells, and central (CD4+CD45RA -CCR7+) and effector (CD4+CD45RA-CCR7 -) memory T-cells were evaluated in 89 untreated patients, 84 patients treated for at least 1 year, and 31 patients beginning treatment at the time of inclusion in the study and then followed-up for 12 months; controls were 81 healthy donors. The T-cell repertoire was analysed in selected samples. The percentage of thymicnaive T helper cells was diminished in untreated patients, but rose to control values in treated subjects; a decrease in central memory T-cells was also observed in treated patients. Follow-up patients could be divided into two subgroups, one showing unmodified thymicnaive T helper cells and T-cell diversity, the other in which the increased release of new T-cells was accompanied by modifications of the T-cell repertoire. Glatiramer acetate modifies the peripheral T-cell pool by activating a thymopoietic pathway of T-cell release that leads to a different setting of T-cell diversity and, likely, to a dilution of autoreactive T-cells.


2013 ◽  
Vol 210 (8) ◽  
pp. 1591-1601 ◽  
Author(s):  
André Ballesteros-Tato ◽  
Beatriz León ◽  
Frances E. Lund ◽  
Troy D. Randall

CD4+ T cells promote CD8+ T cell priming by licensing dendritic cells (DCs) via CD40–CD154 interactions. However, the initial requirement for CD40 signaling may be replaced by the direct activation of DCs by pathogen-derived signals. Nevertheless, CD40–CD154 interactions are often required for optimal CD8+ T cell responses to pathogens for unknown reasons. Here we show that CD40 signaling is required to prevent the premature contraction of the influenza-specific CD8+ T cell response. CD40 is required on DCs but not on B cells or T cells, whereas CD154 is required on CD4+ T cells but not CD8+ T cells, NKT cells, or DCs. Paradoxically, even though CD154-expressing CD4+ T cells are required for robust CD8+ T cell responses, primary CD8+ T cell responses are apparently normal in the absence of CD4+ T cells. We resolved this paradox by showing that the interaction of CD40-bearing DCs with CD154-expressing CD4+ T cells precludes regulatory T cell (T reg cell)–mediated suppression and prevents premature contraction of the influenza-specific CD8+ T cell response. Thus, CD4+ T helper cells are not required for robust CD8+ T cell responses to influenza when T reg cells are absent.


Sign in / Sign up

Export Citation Format

Share Document