scholarly journals Comparative retrieval analysis of antioxidant polyethylene: bonding of vitamin-E does not reduce in-vivo surface damage

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Dominic T. Mathis ◽  
Joshua Schmidli ◽  
Michael T. Hirschmann ◽  
Felix Amsler ◽  
Johann Henckel ◽  
...  

Abstract Background With the Persona® knee system a new polyethylene formulation incorporating vitamin-E which aims to reduce oxidation and maintain wear resistance was introduced. Although in-vitro studies have demonstrated positive effects of the vitamin-E antioxidants on UHMWPE, no retrieval study has looked at polyethylene damage of this system yet. It was the aim to investigate the in-vivo performance of this new design, by comparing it with its predecessor in retrieval analysis. Methods 15 NexGen® and 8 Persona® fixed-bearing implants from the same manufacturer (Zimmer Biomet) were retrieved from two knee revision centres. For retrieval analysis, a macroscopic analysis of polyethylene using a peer-reviewed damage grading method was used (Hood-score). The roughness of all articulating metal components was measured using a contact profilometer. The reason(s) for TKA revision were recorded. Statistical analyses (t-test) were performed to investigate differences between the two designs. Results The mean Hood score for Persona® inserts was 109.3 and for NexGen® 115.1 without significant differences between the two designs. Results from the profilometer revealed that Persona® and NexGen® femoral implants showed an identical mean surface roughness of 0.14 μm. The Persona® tibial tray showed a significantly smoother surface (0.06 μm) compared to the NexGen® (0.2 μm; p < 0.001). Both Hood score and surface roughness were influenced by the reasons for revision (p < 0.01). Conclusions The bonding of the antioxidant vitamin-E to the PE chain used in the novel Persona® knee system does not reduce in-vivo surface damage compared to highly crosslinked PE without supplemented vitamin-E used in its predecessor knee system NexGen®. However, the Persona® titanium alloy tibial tray showed a significantly smoother surface in comparison to the NexGen® titanium alloy tibial tray. This study provides first retrieval findings of a novel TKA design and may help to understand how the new Persona® anatomic knee system performs in vivo.

1988 ◽  
Vol 255 (4) ◽  
pp. E518-E524 ◽  
Author(s):  
J. Hidalgo ◽  
L. Campmany ◽  
M. Borras ◽  
J. S. Garvey ◽  
A. Armario

The possibility that liver metallothionein (MT) can function as an antioxidant in vivo has been studied in the rat. It was found that the stress of food and water deprivation with or without physical immobilization consistently increased liver lipid peroxidation (LLP), suggesting that liver MT induction by stress might be related to the stress-induced LLP. This was supported by results with the lipid peroxidation promoter dimethyl sulfoxide (DMSO) and the natural antioxidant vitamin E. Whereas DMSO administration increased LLP levels in basal and stress situations, vitamin E decreased them. Liver MT levels were increased by DMSO in basal and stress situations, whereas they were decreased by vitamin E during stress. These in vivo results are consistent with an antioxidant role of liver MT suggested by previous in vitro results. However, liver MT preinduction by Zn treatment did not result in a lower MT response to stress. Instead a positive synergistic effect between Zn and stress appeared to be present. This result indicates that the mechanism of action of MT as antioxidant remains unclear.


2019 ◽  
Vol 25 (37) ◽  
pp. 4888-4902 ◽  
Author(s):  
Gilda D'Urso ◽  
Sonia Piacente ◽  
Cosimo Pizza ◽  
Paola Montoro

The consumption of berry-type fruits has become very popular in recent years because of their positive effects on human health. Berries are in fact widely known for their health-promoting benefits, including prevention of chronic disease, cardiovascular disease and cancer. Berries are a rich source of bioactive metabolites, such as vitamins, minerals, and phenolic compounds, mainly anthocyanins. Numerous in vitro and in vivo studies recognized the health effects of berries and their function as bioactive modulators of various cell functions associated with oxidative stress. Plants have one of the largest metabolome databases, with over 1200 papers on plant metabolomics published only in the last decade. Mass spectrometry (MS) and NMR (Nuclear Magnetic Resonance) are the most important analytical technologies on which the emerging ''omics'' approaches are based. They may provide detection and quantization of thousands of biologically active metabolites from a tissue, working in a ''global'' or ''targeted'' manner, down to ultra-trace levels. In the present review, we highlighted the use of MS and NMR-based strategies and Multivariate Data Analysis for the valorization of berries known for their biological activities, important as food and often used in the preparation of nutraceutical formulations.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 708
Author(s):  
Radek Sleha ◽  
Vera Radochova ◽  
Jiri Malis ◽  
Alexander Mikyska ◽  
Milan Houska ◽  
...  

Staphylococcus (S.) aureus is an important causative agent of wound infections with increasing incidence in the past decades. Specifically, the emergence of methicillin-resistant S. aureus (MRSA) causes serious problems, especially in nosocomial infections. Therefore, there is an urgent need to develop of alternative or supportive antimicrobial therapeutic modalities to meet these challenges. Purified compounds from hops have previously shown promising antimicrobial effects against MRSA isolates in vitro. In this study, purified beta-acids from hops were tested for their potential antimicrobial and healing properties using a porcine model of wounds infected by MRSA. The results show highly significant antimicrobial effects of the active substance in both the powder and Ambiderman-based application forms compared to both no-treatment control and treatment with Framycoin. Moreover, the macroscopic evaluation of the wounds during the treatment using the standardized Wound Healing Continuum indicated positive effects of the beta-acids on the overall wound healing. This is further supported by the microscopic data, which showed a clear improvement of the inflammatory parameters in the wounds treated by beta-acids. Thus, using the porcine model, we demonstrate significant therapeutic effects of hops compounds in the management of wounds infected by MRSA. Beta-acids from hops, therefore, represent a suitable candidate for the treatment of non-responsive nosocomial tissue infections by MRSA.


Nanomedicine ◽  
2021 ◽  
Author(s):  
Haq Nawaz ◽  
Iqra Naseem ◽  
Tanzila Rehman ◽  
Mubashir Nawaz

Aim: To optimize the Zinc oxide nanoparticles (ZnONPs)-catalyzed in vitro photolysis of bilirubin and to test their effect on bilirubin clearance in vivo. Materials & methods: ZnONPs, synthesized in an alkaline medium, were characterized. Response surface methodology was used to optimize the in vitro photolysis catalyzed by the nanoparticles (NPs). Blood samples from phenylhydrazine-induced hyperbilirubinemic rabbits which had been administered ZnONPs and UV light were analyzed to assess in vivo clearance of bilirubin. Results: The ZnONP-assisted UV treatment showed the linear and quadratic positive effects on the in vitro bilirubin photolysis with an optimal photolysis of bilirubin at 225 mg dl-1 concentration of ZnONPs and a UV exposure of 1.80 h. The ZnONP-assisted phototherapy of hyperbilirubinemic animals was also found to be more effective for in vivo clearance of bilirubin than phototherapy alone. Conclusion: After further trials, ZnONP-assisted phototherapy could be a potential treatment for hyperbilirubinemia in humans.


2008 ◽  
Vol 1 (3) ◽  
pp. 369-374 ◽  
Author(s):  
Z. Ouanes-Ben Othmen ◽  
S. Essefi ◽  
H. Bacha

It has been suggested that zearalenone, a non-steroidal estrogenic mycotoxin produced by Fusarium graminearium, causes DNA damage. However, the mutagenic properties of this toxin are controversial. The purpose of this study was to investigate both genotoxic and epigenetic effects of zearalenone in vitro. The effects of zearalenone on unscheduled DNA synthesis (UDS), induction of chromosome aberrations and inhibition of gap junctional intercellular communication were determined using Vero cells. The results show that in Vero cells, zearalenone treatment caused a concentration-dependent increase in UDS, induced chromosome aberrations and inhibited gap junctional intercellular communication. All of these effects were either prevented or reduced by co-treatment with the antioxidant vitamin E. The results support the hypothesis that in Vero cells zearalenone-induced oxidative stress is involved in and precedes all of the studied effects.


2021 ◽  
Vol 2 ◽  
Author(s):  
Anushree Vijaykumar ◽  
Mina Mina

Wnt/β-catenin signaling is known to play essential roles in odontoblast differentiation and reparative dentin formation. Various Wnt activators including LiCl have been increasingly studied for their effectiveness to induce repair of the dentin-pulp complex. LiCl is a simple salt thought to activate Wnt/β-catenin signaling by inhibiting GSK3β. Previous in vitro and in vivo studies showed that LiCl increased odontoblast differentiation and enhanced reparative dentin formation. However, the underlying molecular and cellular mechanisms by which LiCl regulates odontoblast and osteoblast differentiation during reparative dentinogenesis are not well-understood. Our in vitro studies show that exposure of early dental pulp progenitors to LiCl increased the survival and the pool of αSMA+ progenitors, leading to enhanced odontoblast and osteoblast differentiation. The positive effects of LiCl in the differentiation of osteoblasts and odontoblasts from αSMA+ progenitors are mediated by Wnt/β-catenin signaling. Our results also showed that continuous and late exposure of dental pulp cells to LiCl increased the expression of odontoblast markers through Wnt/β-catenin signaling, and the number of odontoblasts expressing DMP1-Cherry and DSPP-Cerulean transgenes. However, unlike the early treatment, both continuous and late treatments decreased the expression of Bsp and the expression of BSP-GFPtpz transgene. These observations suggest that prolonged treatment with LiCl in more mature cells of the dental pulp has an inhibitory effect on osteoblast differentiation. The inhibitory effects of LiCl on osteogenesis and Bsp were not mediated through Wnt/β-catenin signaling. These observations suggest that the effects of LiCl, and GSK3β antagonists on reparative dentinogenesis involve multiple pathways and are not specific to Wnt/β-catenin signaling.


2021 ◽  
Vol 22 (23) ◽  
pp. 12921
Author(s):  
Irina Giralt ◽  
Gabriel Gallo-Oller ◽  
Natalia Navarro ◽  
Patricia Zarzosa ◽  
Guillem Pons ◽  
...  

The Wnt/β-catenin signaling pathway plays a pivotal role during embryogenesis and its deregulation is a key mechanism in the origin and progression of several tumors. Wnt antagonists have been described as key modulators of Wnt/β-catenin signaling in cancer, with Dickkopf-1 (DKK-1) being the most studied member of the DKK family. Although the therapeutic potential of DKK-1 inhibition has been evaluated in several diseases and malignancies, little is known in pediatric tumors. Only a few works have studied the genetic inhibition and function of DKK-1 in rhabdomyosarcoma. Here, for the first time, we report the analysis of the therapeutic potential of DKK-1 pharmaceutical inhibition in rhabdomyosarcoma, the most common soft tissue sarcoma in children. We performed DKK-1 inhibition via shRNA technology and via the chemical inhibitor WAY-2626211. Its inhibition led to β-catenin activation and the modulation of focal adhesion kinase (FAK), with positive effects on in vitro expression of myogenic markers and a reduction in proliferation and invasion. In addition, WAY-262611 was able to impair survival of tumor cells in vivo. Therefore, DKK-1 could constitute a molecular target, which could lead to novel therapeutic strategies in RMS, especially in those patients with high DKK-1 expression.


Planta Medica ◽  
2018 ◽  
Vol 84 (03) ◽  
pp. 139-152 ◽  
Author(s):  
Dao Tam ◽  
Duy Truong ◽  
Thi Nguyen ◽  
Le Quynh ◽  
Linh Tran ◽  
...  

AbstractGinsenoside Rh1 is one of major bioactive compounds extracted from red ginseng, which has been increasingly used for enhancing cognition and physical health worldwide. The objective of this study was to review the pharmacological effects of ginsenoside Rh1 in a systematic manner. We performed searches on eight electronic databases including MEDLINE (Pubmed), Scopus, Google Scholar, POPLINE, Global Health Library, Virtual Health Library, the System for Information on Grey Literature in Europe, and the New York Academy of Medicine Grey Literature Report to select the original research publications reporting the biological and pharmacological effects of ginsenoside Rh1 from in vitro and in vivo studies regardless of publication language and study design. Upon applying the inclusion and exclusion criteria, we included a total of 57 studies for our systemic review. Ginsenoside Rh1 exhibited the potent characteristics of anti-inflammatory, antioxidant, immunomodulatory effects, and positive effects on the nervous system. The cytotoxic effects of ginsenoside Rh1 were dependent on different types of cell lines. Other pharmacological effects including estrogenic, enzymatic, anti-microorganism activities, and cardiovascular effects have been mentioned, but the results were considerably diverged. A higher quality of evidence on clinical trial studies is highly recommended to confirm the consistent efficacy of ginsenoside Rh1.


Sign in / Sign up

Export Citation Format

Share Document